Nanoscale niobium oxides anode for electrochemical lithium and sodium storage: a review of recent improvements

Abstract

In recent years, Nb-based oxides, especially Nb2O5, due to their unique structural advantages, have stimulated scholars’ extensive research enthusiasm in the field of energy storage systems including lithium ion batteries (LIBs) and sodium ion batteries (SIBs), excellent chemical stability and outstanding rate capability dominated by pseudocapacitive nature. In addition, Nb-based oxides usually have a higher operating voltage (> 1.0 V vs Li+/Li), which can effectively prevent the decomposition of organic electrolytes and the formation of solid electrolyte interface films in batteries. This review systematically summarizes the different crystal structures of Nb2O5 and the lithium storage mechanism based on theoretical calculations, as well as the comparison of various synthesis strategies. In addition, the advanced research progress of niobium-based oxides as anode materials in LIBs and SIBs is summarized from the perspective of nanostructure control engineering that affects electrochemical performance. It also puts forward reasonable cognition and challenges for future research, which is conducive to the design of energy storage equipment that meets the needs of sustainable development.

Graphic abstract

The design and optimization of various synthesis methods facilitate the formation of a variety of heterogeneous nanostructures, leading to reversible storage of Li and Na ions.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2

Copyright 2017, American Chemical Society

Fig. 3
Fig. 4

Copyright 2015, Nature Publishing Group

Fig. 5

Copyright 2017, Elsevier

Fig. 6

Copyright 2017, American Chemical Society

Fig. 7

Copyright 2019, Wiley

Fig. 8

Copyright 2019, Elsevier

Fig. 9

Copyright 2018, Wiley

Fig. 10

Copyright 2018, The Royal Society of Chemistry

References

  1. 1.

    Zhang, W., Zhang, F., Ming, F., Alshareef, H.N.: Sodium-ion battery anodes: status and future trends. EnergyChem 1, 100012 (2019)

    Article  Google Scholar 

  2. 2.

    Ru, Y., Zheng, S., Xue, H., Pang, H.: Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. Chem. Eng. J. 382, 122853 (2020)

    Article  CAS  Google Scholar 

  3. 3.

    Pender, J.P., Jha, G., Youn, D.H., Ziegler, J.M., Andoni, I., Choi, E.J., Heller, A., Dunn, B.S., Weiss, P.S., Penner, R.M., Mullins, C.B.: Electrode degradation in lithium-ion batteries. ACS Nano 14, 1243–1295 (2020)

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Zhou, W., Fang, L., Long, L., Wang, L., Chen, H., Li, Y., Jia, C.: Facile preparation of Nb2O5@carbon hollow microspheres as high-performance anode materials for lithium-ion batteries. Nanosci. Nanotechnol 19, 268–271 (2019)

    CAS  Google Scholar 

  5. 5.

    Liu, Y., Zhao, Y., Yu, Y., Ahmad, M., Sun, H.: Facile synthesis of single-crystal mesoporous CoNiO2 nanosheets assembled flowers as anode materials for lithium-ion batteries. Electrochim. Acta 132, 404–409 (2014)

    Article  CAS  Google Scholar 

  6. 6.

    Bai, L., Fang, F., Zhao, Y., Liu, Y., Li, J., Sun, H.: A sandwich structure of mesoporous anatase TiO2 sheet and reduced graphene oxide and its application as lithium-ion battery electrodes. RSC Adv. 4, 43039–43046 (2014)

    Article  CAS  Google Scholar 

  7. 7.

    Wang, X., Mujtaba, J., Fang, F., Ahmad, M., Arandiyan, H., Yang, H., Sun, G., Sun, H.: Constructing aligned [gamma]-Fe2O3 nanorods with internal void space anchored on reduced graphene oxide nanosheets for excellent lithium storage. RSC Adv. 5, 91574–91580 (2015)

    Article  CAS  Google Scholar 

  8. 8.

    Ma, J., Guo, X., Xue, H., Pan, K., Liu, C., Pang, H.: Niobium/tantalum-based materials: synthesis and applications in electrochemical energy storage. Chem. Eng. J. 380, 122428 (2020)

    Article  CAS  Google Scholar 

  9. 9.

    Gao, X., Wang, Y., Li, W., Li, F., Arandiyan, H., Sun, H., Chen, Y.: Free-standing Ni–Co alloy nanowire arrays: efficient and robust catalysts toward urea electro-oxidation. Electrochim. Acta 283, 1277–1283 (2018)

    Article  CAS  Google Scholar 

  10. 10.

    Liu, Y., Zhang, H., Jiang, N., Zhang, W., Arandiyan, H., Wang, Z., Luo, S., Fang, F., Sun, H.: Porous Co3O4@CoO composite nanosheets as improved anodes for lithium-ion batteries. J. Alloys Compd. 834, 155030 (2020)

    Article  CAS  Google Scholar 

  11. 11.

    Wan, H., Liu, Y., Zhang, H., Zhang, W., Jiang, N., Wang, Z., Luo, S., Arandiyan, H., Liu, H., Sun, H.: Improved lithium storage properties of Co3O4 nanoparticles via laser irradiation treatment. Electrochim. Acta 281, 31–38 (2018)

    Article  CAS  Google Scholar 

  12. 12.

    Yanguo, L., Yanyan, Z., Beibei, Z., Sufeng, C., Xiaobin, X., Zhihong, W., Hamidreza, A., Hongyu, S.: Assembly of multicomponent nanoframes via the synergistic actions of graphene oxide space confinement effect and oriented cation exchange. Nanotechnology 26, 445601 (2015)

    Article  CAS  Google Scholar 

  13. 13.

    Shan, Y., Li, Y., Pang, H.: Applications of Tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 30, 2001298 (2020)

    Article  CAS  Google Scholar 

  14. 14.

    Wang, X., Salari, M., Jiang, D.-E., Chapman Varela, J., Anasori, B., Wesolowski, D.J., Dai, S., Grinstaff, M.W., Gogotsi, Y.: Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. (2020). https://doi.org/10.1038/s41578-020-0218-9

    Article  Google Scholar 

  15. 15.

    Zhao, Y., Kuai, L., Liu, Y., Wang, P., Arandiyan, H., Cao, S., Zhang, J., Li, F., Wang, Q., Geng, B., Sun, H.: Well-constructed single-layer molybdenum disulfide nanorose cross-linked by three dimensional-reduced graphene oxide network for superior water splitting and lithium storage property. Sci. Rep. 5, 8722 (2015)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Yu, Y., Li, J., Wang, J., Wu, X., Yu, C., Xu, T., Chang, B., Sun, H., Arandiyan, H.: Orientation growth and magnetic properties of electrochemical deposited nickel nanowire arrays. Catalysts 9, 152 (2019)

    Article  CAS  Google Scholar 

  17. 17.

    Liu, M., Yan, C., Zhang, Y.: Fabrication of Nb2O5 nanosheets for high-rate lithium ion storage applications. Sci. Rep. 5, 8326 (2015)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Shi, C., Xiang, K., Zhu, Y., Chen, X., Zhou, W., Chen, H.: Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries. Electrochim. Acta 246, 1088–1096 (2017)

    Article  CAS  Google Scholar 

  19. 19.

    Sun, H., Liu, Y., Yu, Y., Ahmad, M., Nan, D., Zhu, J.: Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries. Electrochim. Acta 118, 1–9 (2014)

    Article  CAS  Google Scholar 

  20. 20.

    Yuan, C., Wu, H.B., Xie, Y., Lou, X.W.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)

    Article  CAS  Google Scholar 

  21. 21.

    Ye, R., Ohta, K., Baba, M.: Electrochemical properties of amorphous Nb2O5 thin film and its application to rechargeable thin film lithium ion batteries. ECS Trans. 73, 49–55 (2016)

    Article  CAS  Google Scholar 

  22. 22.

    Brousse, T., Bélanger, D., Long, J.W.: To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015)

    Article  CAS  Google Scholar 

  23. 23.

    Fleischmann, S., Mitchell, J.B., Wang, R., Zhan, C., Jiang, D.-E., Presser, V., Augustyn, V.: Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020)

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Zhang, L., Zhang, X., Tian, G., Zhang, Q., Knapp, M., Ehrenberg, H., Chen, G., Shen, Z., Yang, G., Gu, L., Du, F.: Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nat. Commun 11, 3490 (2020)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Zhang, H., Wang, Y., Liu, P., Chou, S.L., Wang, J.Z., Liu, H., Wang, G., Zhao, H.: Highly ordered single crystalline nanowire array assembled three-dimensional Nb3O7(OH) and Nb2O5 superstructures for energy storage and conversion applications. ACS Nano 10, 507–514 (2016)

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Wang, X., Li, Q., Zhang, L., Hu, Z., Yu, L., Jiang, T., Lu, C., Yan, C., Sun, J., Liu, Z.: Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 30, 1800963 (2018)

    Article  CAS  Google Scholar 

  27. 27.

    Lin, J., Yuan, Y., Su, Q., Pan, A., Dinesh, S., Peng, C., Cao, G., Liang, S.: Facile synthesis of Nb2O5/carbon nanocomposites as advanced anode materials for lithium-ion batteries. Electrochim. Acta 292, 63–71 (2018)

    Article  CAS  Google Scholar 

  28. 28.

    Zhang, C., Maloney, R., Lukatskaya, M.R., Beidaghi, M., Dyatkin, B., Perre, E., Long, D., Qiao, W., Dunn, B., Gogotsi, Y.: Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon. J. Power Sources 274, 121–129 (2015)

    Article  CAS  Google Scholar 

  29. 29.

    Nico, C., Monteiro, T., Graça, M.P.F.: Niobium oxides and niobates physical properties: review and prospects. Prog. Mater Sci. 80, 1–37 (2016)

    Article  CAS  Google Scholar 

  30. 30.

    Kong, L., Cao, X., Wang, J., Qiao, W., Ling, L., Long, D.: Revisiting Li+ intercalation into various crystalline phases of Nb2O5 anchored on graphene sheets as pseudocapacitive electrodes. J. Power Sources 309, 42–49 (2016)

    Article  CAS  Google Scholar 

  31. 31.

    Song, Z., Li, H., Liu, W., Zhang, H., Yan, J., Tang, Y., Huang, J., Zhang, H., Li, X.: Ultrafast and stable Li-(De)intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport. Adv. Mater. 32, 2001001 (2020)

    Article  CAS  Google Scholar 

  32. 32.

    Griffith, K.J., Forse, A.C., Griffin, J.M., Grey, C.P.: High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases. J. Am. Chem. Soc. 138, 8888–8899 (2016)

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  34. 34.

    Kodama, R., Terada, Y., Nakai, I., Komaba, S., Kumagai, N.: Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J. Electrochem. Soc. 153, A583–A588 (2006)

    Article  CAS  Google Scholar 

  35. 35.

    Viet, A.L., Reddy, M.V., Jose, R., Chowdari, B.V.R., Ramakrishna, S.: Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J. Phys. Chem. C 114, 664–671 (2010)

    Article  CAS  Google Scholar 

  36. 36.

    Lim, E., Jo, C., Kim, H., Kim, M.-H., Mun, Y., Chun, J., Ye, Y., Hwang, J., Ha, K.-S., Roh, K.C., Kang, K., Yoon, S., Lee, J.: Facile synthesis of Nb2O5@carbon core–shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9, 7497–7505 (2015)

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Arico, C., Ouendi, S., Taberna, P.-L., Roussel, P., Simon, P., Lethien, C.: Fast electrochemical storage process in sputtered Nb2O5 porous thin films. ACS Nano 13, 5826–5832 (2019)

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Kang, S.H., Park, C.-M., Lee, J., Kim, J.-H.: Electrochemical lithium storage kinetics of self-organized nanochannel niobium oxide electrodes. J. Electroanal. Chem. 746, 45–50 (2015)

    Article  CAS  Google Scholar 

  39. 39.

    Lübke, M., Sumboja, A., Johnson, I.D., Brett, D.J.L., Shearing, P.R., Liu, Z., Darr, J.A.: High power nano-Nb2O5 negative electrodes for lithium-ion batteries. Electrochim. Acta 192, 363–369 (2016)

    Article  CAS  Google Scholar 

  40. 40.

    Cheong, J.Y., Jung, J.-W., Youn, D.-Y., Kim, C., Yu, S., Cho, S.-H., Yoon, K.R., Kim, I.-D.: Mesoporous orthorhombic Nb2O5 nanofibers as pseudocapacitive electrodes with ultra-stable Li storage characteristics. J. Power Sour. 360, 434–442 (2017)

    Article  CAS  Google Scholar 

  41. 41.

    Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P.-L., Tolbert, S.H., Abruña, H.D., Simon, P., Dunn, B.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013)

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Chen, D., Wang, J.-H., Chou, T.-F., Zhao, B., El-Sayed, M.A., Liu, M.: Unraveling the nature of anomalously fast energy storage in T-Nb2O5. J. Am. Chem. Soc. 139, 7071–7081 (2017)

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Deng, Q., Fu, Y., Zhu, C., Yu, Y.: Niobium-based oxides toward advanced electrochemical energy storage: Recent advances and challenges. Small 15, 1804884 (2019)

    Article  CAS  Google Scholar 

  44. 44.

    Hu, Z., He, Q., Liu, Z., Liu, X., Qin, M., Wen, B., Shi, W., Zhao, Y., Li, Q., Mai, L.: Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal capacity. Science Bulletin 65, 1154–1162 (2020)

    Article  CAS  Google Scholar 

  45. 45.

    Park, H., Lee, D., Song, T.: High capacity monoclinic Nb2O5 and semiconducting NbO2 composite as high-power anode material for Li-ion batteries. J. Power Sources 414, 377–382 (2019)

    Article  CAS  Google Scholar 

  46. 46.

    Meng, J., He, Q., Xu, L., Zhang, X., Liu, F., Wang, X., Li, Q., Xu, X., Zhang, G., Niu, C., Xiao, Z., Liu, Z., Zhu, Z., Zhao, Y., Mai, L.: Identification of phase control of carbon-confined Nb2O5 nanoparticles toward high-performance lithium storage. Adv. Energy Mater. 9, 1802695 (2019)

    Article  CAS  Google Scholar 

  47. 47.

    Budak, Ö., Geißler, M., Becker, D., Kruth, A., Quade, A., Haberkorn, R., Kickelbick, G., Etzold, B.J.M., Presser, V.: Carbide-derived niobium pentoxide with enhanced charge storage capacity for use as a lithium-ion battery electrode. ACS Appl. Energy Mater. 3, 4275–4285 (2020)

    Article  CAS  Google Scholar 

  48. 48.

    Li, S., Xu, Q., Uchaker, E., Cao, X., Cao, G.: Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion. CrystEngComm 18, 2532–2540 (2016)

    Article  CAS  Google Scholar 

  49. 49.

    Shi, C., Xiang, K., Zhu, Y., Zhou, W., Chen, X., Chen, H.: Box-implanted Nb2O5 nanorods as superior anode materials in lithium ion batteries. Ceram. Int. 43, 12388–12395 (2017)

    Article  CAS  Google Scholar 

  50. 50.

    Li, S., Schmidt, C.N., Xu, Q., Cao, X., Cao, G.: Macroporous nanostructured Nb2O5 with surface Nb4+ for enhanced lithium ion storage properties. ChemNanoMat 2, 675–680 (2016)

    Article  CAS  Google Scholar 

  51. 51.

    Kumagai, N., Koishikawa, Y., Komaba, S., Koshiba, N.: Thermodynamics and kinetics of lithium intercalation into Nb2O5 electrodes for a 2 V rechargeable lithium battery. J. Electrochem. Soc. 146, 3203–3210 (1999)

    Article  CAS  Google Scholar 

  52. 52.

    Come, J., Augustyn, V., Kim, J.W., Rozier, P., Taberna, P.-L., Gogotsi, P., Long, J.W., Dunn, B., Simon, P.: Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014)

    Article  CAS  Google Scholar 

  53. 53.

    Ko, J.S., Lai, C.-H., Long, J.W., Rolison, D.R., Dunn, B., Nelson Weker, J.: Differentiating double-layer, pseudocapacitance, and battery-like mechanisms by analyzing impedance measurements in three dimensions. ACS Appl. Mater. 12, 20145 (2020)

    Article  CAS  Google Scholar 

  54. 54.

    Kim, J.W., Augustyn, V., Dunn, B.: The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2, 141–148 (2012)

    Article  CAS  Google Scholar 

  55. 55.

    Song, H., Fu, J., Ding, K., Huang, C., Wu, K., Zhang, X., Gao, B., Huo, K., Peng, X., Chu, P.K.: Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J. Power Sources 328, 599–606 (2016)

    Article  CAS  Google Scholar 

  56. 56.

    Idrees, F., Hou, J., Cao, C., Butt, F.K., Shakir, I., Tahir, M., Idrees, F.: Template-free synthesis of highly ordered 3D-hollow hierarchical Nb2O5 superstructures as an asymmetric supercapacitor by using inorganic electrolyte. Electrochim. Acta 216, 332–338 (2016)

    Article  CAS  Google Scholar 

  57. 57.

    Deng, B., Lei, T., Zhu, W., Xiao, L., Liu, J.: In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv. Funct. Mater. 28, 1704330 (2018)

    Article  CAS  Google Scholar 

  58. 58.

    Muruganantham, R., Sivakumar, M., Subadevi, R.: Polyol technique synthesis of Nb2O5 coated on LiFePO4 cathode materials for Li-ion storage. Ionics 24, 989–999 (2018)

    Article  CAS  Google Scholar 

  59. 59.

    Liu, H., Gao, N., Liao, M., Fang, X.: Hexagonal-like Nb2O5 nanoplates-based photodetectors and photocatalyst with high performances. Sci. Rep. 5, 7716 (2015)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Ma, G., Li, K., Li, Y., Gao, B., Ding, T., Zhong, Q., Su, J., Gong, L., Chen, J., Yuan, L., Hu, B., Zhou, J., Huo, K.: High-performance hybrid supercapacitor based on graphene-wrapped mesoporous T-Nb2O5 nanospheres anode and mesoporous carbon-coated graphene cathode. ChemElectroChem 3, 1360–1368 (2016)

    Article  CAS  Google Scholar 

  61. 61.

    Li, H., Zhu, Y., Dong, S., Shen, L., Chen, Z., Zhang, X., Yu, G.: Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28, 5753–5760 (2016)

    Article  CAS  Google Scholar 

  62. 62.

    Kong, L., Zhang, C., Wang, J., Qiao, W., Ling, L., Long, D.: Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 9, 11200–11208 (2015)

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Ojha, V., Kato, K., Kabbani, M.A., Babu, G., Ajayan, P.M.: Nb2O5/reduced graphene oxide nanocomposite anode for high power hybrid supercapacitor applications. ChemistrySelect 4, 1098–1102 (2019)

    Article  CAS  Google Scholar 

  64. 64.

    Hemmati, S., Li, G., Wang, X., Ding, Y., Pei, Y., Yu, A., Chen, Z.: 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy 56, 118–126 (2019)

    Article  CAS  Google Scholar 

  65. 65.

    Silva, R.M., Noremberg, B.S., Marins, N.H., Milne, J., Zhitomirsky, I., Carreño, N.L.V.: Microwave-assisted hydrothermal synthesis and electrochemical characterization of niobium pentoxide/carbon nanotubes composites. J. Mater. Res. 34, 592–599 (2019)

    Article  CAS  Google Scholar 

  66. 66.

    Wan, J., Yao, X., Gao, X., Xiao, X., Li, T., Wu, J., Sun, W., Hu, Z., Yu, H., Huang, L., Liu, M., Zhou, J.: Microwave combustion for modification of transition metal oxides. Adv. Funct. Mater. 26, 7263–7270 (2016)

    Article  CAS  Google Scholar 

  67. 67.

    Wen, Z., Wang, G.: In-situ liquid phase epitaxy: another strategy to synthesize heterostructured core-shell composites. Sci. Rep. 6, 25260 (2016)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Jha, G., Tran, T., Qiao, S., Ziegler, J.M., Ogata, A.F., Dai, S., Xu, M., Le Thai, M., Chandran, G.T., Pan, X., Penner, R.M.: Electrophoretic deposition of mesoporous niobium (V) oxide nanoscopic films. Chem. Mater. 30, 6549–6558 (2018)

    Article  CAS  Google Scholar 

  69. 69.

    Ni, J., Wang, W., Wu, C., Liang, H., Maier, J., Yu, Y., Li, L.: Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 29, 1605607 (2017)

    Article  CAS  Google Scholar 

  70. 70.

    Fiz, R., Appel, L., Gutiérrez-Pardo, A., Ramírez-Rico, J., Mathur, S.: Electrochemical energy storage applications of CVD grown niobium oxide thin films. ACS Appl. Mater. Interfaces. 8, 21423–21430 (2016)

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Cheong, J.Y., Kim, C., Jung, J.-W., Yoon, K.R., Cho, S.-H., Youn, D.-Y., Jang, H.-Y., Kim, I.-D.: Formation of a surficial bifunctional nanolayer on Nb2O5 for ultrastable electrodes for lithium-ion battery. Small 13, 1603610 (2017)

    Article  CAS  Google Scholar 

  72. 72.

    Huang, C., Fu, J., Song, H., Li, X., Peng, X., Gao, B., Zhang, X., Chu, P.K.: General fabrication of mesoporous Nb2O5 nanobelts for lithium ion battery anodes. RSC Adv. 6, 90489–90493 (2016)

    Article  CAS  Google Scholar 

  73. 73.

    Zhang, C., Beidaghi, M., Naguib, M., Lukatskaya, M.R., Zhao, M.-Q., Dyatkin, B., Cook, K.M., Kim, S.J., Eng, B., Xiao, X., Long, D., Qiao, W., Dunn, B., Gogotsi, Y.: Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem. Mater. 28, 3937–3943 (2016)

    Article  CAS  Google Scholar 

  74. 74.

    Zhang, C., Kim, S.J., Ghidiu, M., Zhao, M.-Q., Barsoum, M.W., Nicolosi, V., Gogotsi, Y.: Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv. Funct. Mater. 26, 4143–4151 (2016)

    Article  CAS  Google Scholar 

  75. 75.

    Wang, X., Yushin, G.: Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy Environ. Sci. 8, 1889–1904 (2015)

    Article  CAS  Google Scholar 

  76. 76.

    Ahmed, B., Xia, C., Alshareef, H.N.: Electrode surface engineering by atomic layer deposition: a promising pathway toward better energy storage. Nano Today 11, 250–271 (2016)

    Article  CAS  Google Scholar 

  77. 77.

    Ouendi, S., Arico, C., Blanchard, F., Codron, J.-L., Wallart, X., Taberna, P.L., Roussel, P., Clavier, L., Simon, P., Lethien, C.: Synthesis of T-Nb2O5 thin-films deposited by atomic layer deposition for miniaturized electrochemical energy storage devices. Energy Storage Mater. 16, 581–588 (2019)

    Article  Google Scholar 

  78. 78.

    Zhu, S., Xu, P., Liu, J., Sun, J.: Atomic layer deposition and structure optimization of ultrathin Nb2O5 films on carbon nanotubes for high-rate and long-life lithium ion storage. Electrochim. Acta 331, 135268 (2020)

    Article  CAS  Google Scholar 

  79. 79.

    Arandiyan, H., Wang, Y., Sun, H., Rezaei, M., Dai, H.: Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chem. Commun. 54, 6484–6502 (2018)

    Article  CAS  Google Scholar 

  80. 80.

    Arandiyan, H., Wang, Y., Scott, J., Mesgari, S., Dai, H., Amal, R.: In situ exsolution of bimetallic Rh–Ni nanoalloys: a highly efficient catalyst for CO2 methanation. ACS Appl. Mater. Interfaces. 10, 16352–16357 (2018)

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Wang, Y., Arandiyan, H., Scott, J., Dai, H., Amal, R.: Hierarchically porous network-like Ni/Co3O4: Noble metal-free catalysts for carbon dioxide methanation. Adv. Sustainable Syst. 2, 1700119 (2018)

    Article  CAS  Google Scholar 

  82. 82.

    Wang, Y., Arandiyan, H., Tahini, H.A., Scott, J., Tan, X., Dai, H., Gale, J.D., Rohl, A.L., Smith, S.C., Amal, R.: The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts. Nat. Commun. 8, 15553 (2017)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Wang, Y., Dai, H., Deng, J., Liu, Y., Arandiyan, H., Li, X., Gao, B., Xie, S.: 3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sci. 24, 62–70 (2013)

    Article  CAS  Google Scholar 

  84. 84.

    Wang, Y., Arandiyan, H., Liu, Y., Liang, Y., Peng, Y., Bartlett, S., Dai, H., Rostamnia, S., Li, J.: Template-free scalable synthesis of flower-like Co3−xMnxO4 spinel catalysts for toluene oxidation. ChemCatChem 10, 3429–3434 (2018)

    Article  CAS  Google Scholar 

  85. 85.

    Wang, L., Bi, X., Yang, S.: Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 28, 7672–7679 (2016)

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Lou, S., Cheng, X., Wang, L., Gao, J., Li, Q., Ma, Y., Gao, Y., Zuo, P., Du, C., Yin, G.: High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. J. Power Sources 361, 80–86 (2017)

    Article  CAS  Google Scholar 

  87. 87.

    Wang, J., Li, H., Shen, L., Dong, S., Zhang, X.: Nb2O5 nanoparticles encapsulated in ordered mesoporous carbon matrix as advanced anode materials for Li ion capacitors. RSC Adv. 6, 71338–71344 (2016)

    Article  CAS  Google Scholar 

  88. 88.

    Kumagai, N., Tanno, K.: Structural changes of Nb2O5 and V2O5 as rechargeable cathodes for lithium battery. Electrochim. Acta 28, 17–22 (1983)

    Article  CAS  Google Scholar 

  89. 89.

    Li, Y., Wang, H., Wang, L., Mao, Z., Wang, R., He, B., Gong, Y., Hu, X.: Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 15, 1804539 (2019)

    Article  CAS  Google Scholar 

  90. 90.

    Wang, L., Ruan, B., Xu, J., Liu, H.K., Ma, J.: Amorphous carbon layer contributing Li storage capacity to Nb2O5@C nanosheets. RSC Adv. 5, 36104–36107 (2015)

    Article  CAS  Google Scholar 

  91. 91.

    Kong, L., Liu, X., Wei, J., Wang, S., Xu, B.B., Long, D., Chen, F.: T-Nb2O5 nanoparticle enabled pseudocapacitance with fast Li-ion intercalation. Nanoscale 10, 14165–14170 (2018)

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Kim, K., Woo, S.-G., Jo, Y.N., Lee, J., Kim, J.-H.: Niobium oxide nanoparticle core–amorphous carbon shell structure for fast reversible lithium storage. Electrochim. Acta 240, 316–322 (2017)

    Article  CAS  Google Scholar 

  93. 93.

    Kim, S., Jeong, I., Hwang, J., Ko, M.J., Lee, J.: Simple synthesis of multiple length-scale structured Nb2O5 with functional macrodomain-integrated mesoporous frameworks. Chem. Commun. 53, 4100–4103 (2017)

    Article  CAS  Google Scholar 

  94. 94.

    Sasidharan, M., Gunawardhana, N., Yoshio, M., Nakashima, K.: Nb2O5 hollow nanospheres as anode material for enhanced performance in lithium ion batteries. Mater. Res. Bull. 47, 2161–2164 (2012)

    Article  CAS  Google Scholar 

  95. 95.

    Liu, Z., Dong, W., Wang, J., Dong, C., Lin, Y., Chen, I.-W., Huang, F.: Orthorhombic Nb2O5−x for durable high-rate anode of Li-ion batteries. iScience 23, 100767 (2019)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Lim, E., Jo, C., Kim, M.S., Kim, M.-H., Chun, J., Kim, H., Park, J., Roh, K.C., Kang, K., Yoon, S., Lee, J.: High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv. Funct. Mater. 26, 3711–3719 (2016)

    Article  CAS  Google Scholar 

  97. 97.

    Cheong, J.Y., Youn, D.Y., Kim, C., Jung, J.-W., Ogata, A.F., Bae, J.G., Kim, I.-D.: Ag-coated one-dimensional orthorhombic Nb2O5 fibers as high performance electrodes for lithium storage. Electrochim. Acta 269, 388–396 (2018)

    Article  CAS  Google Scholar 

  98. 98.

    She, L., Li, Q., Zhang, F., Kang, L., He, X., Sun, J., Lei, Z., Liu, Z.-H.: Sulfur doping induced anionic oxidation of niobium-pentoxide-based anode for ultralong-life and high energy-density Na-ion capacitors. J. Power Sources 451, 227744 (2020)

    Article  CAS  Google Scholar 

  99. 99.

    Yang, L., Zhu, Y.-E., Sheng, J., Li, F., Tang, B., Zhang, Y., Zhou, Z.: T-Nb2O5/C nanofibers prepared through electrospinning with prolonged cycle durability for high-rate sodium–ion batteries induced by pseudocapacitance. Small 13, 1702588 (2017)

    Article  CAS  Google Scholar 

  100. 100.

    Han, Y., Yang, M., Zhang, Y., Xie, J., Yin, D., Li, C.: Tetragonal tungsten bronze framework as potential anode for Na-ion batteries. Chem. Mater. 28, 3139–3147 (2016)

    Article  CAS  Google Scholar 

  101. 101.

    Cao, D., Zhang, J., Li, C.: H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries. Energy Storage Mater. 11, 152–160 (2017)

    Article  Google Scholar 

  102. 102.

    Vicentini, R., Soares, D.M., Nunes, W., Freitas, B., Costa, L., Da Silva, L.M., Zanin, H.: Core-niobium pentoxide carbon-shell nanoparticles decorating multiwalled carbon nanotubes as electrode for electrochemical capacitors. J. Power Sources 434, 226737 (2019)

    Article  CAS  Google Scholar 

  103. 103.

    Chen, H., Zhang, H., Wu, Y., Zhang, T., Guo, Y., Zhang, Q., Zeng, Y., Lu, J.: Nanostructured Nb2O5 cathode for high-performance lithium-ion battery with Super-P and graphene compound conductive agents. J. Electroanal. Chem. 827, 112–119 (2018)

    Article  CAS  Google Scholar 

  104. 104.

    Uchida, S., Zettsu, N., Hirata, K., Kami, K., Teshima, K.: High-voltage capabilities of ultra-thin Nb2O5 nanosheet coated LiNi1/3Co1/3Mn1/3O2 cathodes. RSC Adv. 6, 67514–67519 (2016)

    Article  CAS  Google Scholar 

  105. 105.

    Liu, X., Liu, G., Chen, H., Ma, J., Zhang, R.: Facile synthesis of Nb2O5 nanobelts assembled from nanorods and their applications in lithium ion batteries. J. Phys. Chem. Solids 111, 8–11 (2017)

    Article  CAS  Google Scholar 

  106. 106.

    Sun, Y.-G., Piao, J.-Y., Hu, L.-L., Bin, D.-S., Lin, X.-J., Duan, S.-Y., Cao, A.-M., Wan, L.-J.: Controlling the reaction of nanoparticles for hollow metal oxide nanostructures. J. Am. Chem. Soc. 140, 9070–9073 (2018)

    PubMed  Article  CAS  Google Scholar 

  107. 107.

    Lu, H., Xiang, K., Bai, N., Zhou, W., Wang, S., Chen, H.: Urchin-shaped Nb2O5 microspheres synthesized by the facile hydrothermal method and their lithium storage performance. Mater. Lett. 167, 106–108 (2016)

    Article  CAS  Google Scholar 

  108. 108.

    Liu, S., Zhou, J., Cai, Z., Fang, G., Pan, A., Liang, S.: Nb2O5 microstructures: a high-performance anode for lithium ion batteries. Nanotechnology 27, 46 (2016). (LT01)

    Google Scholar 

  109. 109.

    Liu, X., Liu, G., Liu, Y., Sun, R., Ma, J., Guo, J., Hu, M.: Urchin-like hierarchical H-Nb2O5 microspheres: synthesis, formation mechanism and their applications in lithium ion batteries. Dalton Trans. 46, 10935–10940 (2017)

    PubMed  Article  CAS  Google Scholar 

  110. 110.

    Liu, G., Jin, B., Bao, K., Xie, H., Guo, J., Ji, X., Zhang, R., Jiang, Q.: Facile synthesis of porous Nb2O5 microspheres as anodes for lithium-ion batteries. Int. J. Hydrog. Energy 42, 6065–6071 (2017)

    Article  CAS  Google Scholar 

  111. 111.

    Chen, J., Wang, H., Zhang, X., Liu, B., Xu, L., Zhang, Z., Zhang, Y.: 2D ultrathin nanosheet-assembled Nb2O5 microflowers for lithium ion batteries. Mater. Lett. 227, 112–115 (2018)

    Article  CAS  Google Scholar 

  112. 112.

    Yu, H., Xu, L., Wang, H., Jiang, H., Li, C.: Nanochannel-confined synthesis of Nb2O5/CNTs nanopeapods for ultrastable lithium storage. Electrochim. Acta 295, 829–834 (2019)

    Article  CAS  Google Scholar 

  113. 113.

    Kong, F., Tao, S., Qian, B., Gao, L.: Multiwalled carbon nanotube-modified Nb2O5 with enhanced electrochemical performance for lithium-ion batteries. Ceram. Int. 44, 23226–23231 (2018)

    Article  CAS  Google Scholar 

  114. 114.

    Luo, G., Li, H., Zhang, D., Gao, L., Lin, T.: A template-free synthesis via alkaline route for Nb2O5/carbon nanotubes composite as pseudo-capacitor material with high-rate performance. Electrochim. Acta 235, 175–181 (2017)

    Article  CAS  Google Scholar 

  115. 115.

    Chen, Y., Wang, Y., Yousaf, M., Ma, Z., Zou, M., Cao, A., Han, R.P.S.: A 3-D binder-free nanoporous anode for a safe and stable charging of lithium ion batteries. Mater. Res. Bull. 93, 1–8 (2017)

    Article  CAS  Google Scholar 

  116. 116.

    Zeng, G.-Y., Wang, H., Guo, J., Cha, L.-M., Dou, Y.-H., Ma, J.-M.: Fabrication of Nb2O5/C nanocomposites as a high performance anode for lithium ion battery. Chin. Chem. Lett. 28, 755–758 (2017)

    Article  CAS  Google Scholar 

  117. 117.

    Wen, L., Li, F., Cheng, H.-M.: Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28, 4306–4337 (2016)

    PubMed  Article  CAS  Google Scholar 

  118. 118.

    Zhao, Y., Ding, C., Hao, Y., Zhai, X., Wang, C., Li, Y., Li, J., Jin, H.: Neat design for the structure of electrode to optimize the lithium-ion battery performance. ACS Appl. Mater. Interfaces. 10, 27106–27115 (2018)

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Arunkumar, P., Ashish, A.G., Babu, B., Sarang, S., Suresh, A., Sharma, C.H., Thalakulam, M., Shaijumon, M.M.: Nb2O5/graphene nanocomposites for electrochemical energy storage. RSC Adv. 5, 59997–60004 (2015)

    Article  CAS  Google Scholar 

  120. 120.

    Shi, C., Xiang, K., Zhu, Y., Chen, X., Zhou, W., Chen, H.: Nb2O5 nanospheres/surface-modified graphene composites as superior anode materials in lithium ion batteries. Ceram. Int. 43, 6232–6238 (2017)

    Article  CAS  Google Scholar 

  121. 121.

    Zhao, G., Zhang, L., Li, C., Huang, H., Sun, X., Sun, K.: A practical Li ion battery anode material with high gravimetric/volumetric capacities based on T-Nb2O5/graphite composite. Chem. Eng. J. 328, 844–852 (2017)

    Article  CAS  Google Scholar 

  122. 122.

    Song, M.Y., Kim, N.R., Yoon, H.J., Cho, S.Y., Jin, H.-J., Yun, Y.S.: Long-lasting Nb2O5-based nanocomposite materials for Li-ion storage. ACS Appl. Mater. Interfaces. 9, 2267–2274 (2017)

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Deng, Q., Li, M., Wang, J., Jiang, K., Hu, Z., Chu, J.: Free-anchored Nb2O5@graphene networks for ultrafast-stable lithium storage. Nanotechnology 29, 185401 (2018)

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Sun, H., Mei, L., Liang, J., Zhao, Z., Lee, C., Fei, H., Ding, M., Lau, J., Li, M., Wang, C., Xu, X., Hao, G., Papandrea, B., Shakir, I., Dunn, B., Huang, Y., Duan, X.: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017)

    PubMed  Article  CAS  Google Scholar 

  125. 125.

    Qu, X., Liu, Y., Li, B., Xing, B., Huang, G., Zhang, C., Hong, S.W., Yu, J., Cao, Y.: Synthesis of high reversibility anode composite materials using T-Nb2O5 and coal-based graphite for lithium-ion battery applications. Energy Fuels 34, 3887–3894 (2020)

    Article  CAS  Google Scholar 

  126. 126.

    Han, X., Russo, P.A., Goubard-Bretesché, N., Patanè, S., Santangelo, S., Zhang, R., Pinna, N.: Exploiting the condensation reactions of acetophenone to engineer carbon-encapsulated Nb2O5 nanocrystals for high-performance Li and Na energy storage systems. Adv. Energy Mater. 9, 1902813 (2019)

    Article  CAS  Google Scholar 

  127. 127.

    Han, X., Russo, P.A., Triolo, C., Santangelo, S., Goubard-Bretesché, N., Pinna, N.: Comparing the performance of Nb2O5 composites with reduced graphene oxide and amorphous carbon in Li- and Na-ion electrochemical storage devices. ChemElectroChem 7, 1689–1698 (2020)

    Article  CAS  Google Scholar 

  128. 128.

    Zou, F., Hu, X., Li, Z., Qie, L., Hu, C., Zeng, R., Jiang, Y., Huang, Y.: MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 26, 6622–6628 (2014)

    PubMed  Article  CAS  Google Scholar 

  129. 129.

    Hou, L., Bao, R., Denis, D.K., Sun, X., Zhang, J., Zaman, F.U., Yuan, C.: Synthesis of ultralong ZnFe2O4@polypyrrole nanowires with enhanced electrochemical Li-storage behaviors for lithium-ion batteries. Electrochim. Acta 306, 198–208 (2019)

    Article  CAS  Google Scholar 

  130. 130.

    Huang, W., Sun, H., Shangguan, H., Cao, X., Xiao, X., Shen, F., Mølhave, K., Ci, L., Si, P., Zhang, J.: Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale 10, 7851–7859 (2018)

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Kim, K., Kim, J.-H.: Bottom-up self-assembly of nano-netting cluster microspheres as high-performance lithium storage materials. J. Mater. Chem. A 6, 13321–13330 (2018)

    Article  CAS  Google Scholar 

  132. 132.

    Yu, X., Xin, L., Liu, Y., Zhao, W., Li, B., Zhou, X., Shen, H.: One-step synthesis of Nb-doped TiO2 rod@Nb2O5 nanosheet core–shell heterostructures for stable high-performance lithium-ion batteries. RSC Adv. 6, 27094–27101 (2016)

    Article  CAS  Google Scholar 

  133. 133.

    Liu, Y., Lin, L., Zhang, W., Wei, M.: Heterogeneous TiO2@Nb2O5 composite as a high-performance anode for lithium-ion batteries. Sci. Rep. 7, 7204 (2017)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. 134.

    Tolosa, A., Fleischmann, S., Grobelsek, I., Quade, A., Lim, E., Presser, V.: Binder-free hybrid titanium-niobium oxide/carbon nanofiber mats for lithium-ion battery electrodes. Chemsuschem 11, 159–170 (2017)

    PubMed  Article  CAS  Google Scholar 

  135. 135.

    Wang, G., Wen, Z., Du, L., Yang, Y.-E., Li, S., Sun, J., Ji, S.: Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries. J. Power Sources 367, 106–115 (2017)

    Article  CAS  Google Scholar 

  136. 136.

    Griffith, K.J., Senyshyn, A., Grey, C.P.: Structural stability from crystallographic shear in TiO2–Nb2O5 phases: cation ordering and lithiation behavior of TiNb24O62. Inorg. Chem. 56, 4002–4010 (2017)

    PubMed  Article  CAS  Google Scholar 

  137. 137.

    Yoon, S., Lee, S.-Y., Nguyen, T.L., Kim, I.T., Woo, S.-G., Cho, K.Y.: Controlled synthesis of dual-phase carbon-coated Nb2O5/TiNb2O7 porous spheres and their Li-ion storage properties. J. Alloys Compd. 731, 437–443 (2018)

    Article  CAS  Google Scholar 

  138. 138.

    Yu, H., Cheng, X., Zhu, H., Zheng, R., Liu, T., Zhang, J., Shui, M., Xie, Y., Shu, J.: Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54, 227–237 (2018)

    Article  CAS  Google Scholar 

  139. 139.

    Lee, J.M., Kwon, N.H., Kim, I.Y., Hwang, S.-J.: A vapor-phase carbon-deposition route to efficient inorganic nanosheet-based electrodes. Mater. Lett. 179, 217–221 (2016)

    Article  CAS  Google Scholar 

  140. 140.

    Lou, S., Cheng, X., Gao, J., Li, Q., Wang, L., Cao, Y., Ma, Y., Zuo, P., Gao, Y., Du, C., Huo, H., Yin, G.: Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Mater. 11, 57–66 (2018)

    Article  Google Scholar 

  141. 141.

    Deng, S., Chao, D., Zhong, Y., Zeng, Y., Yao, Z., Zhan, J., Wang, Y., Wang, X., Lu, X., Xia, X., Tu, J.: Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Mater. 12, 137–144 (2018)

    Article  Google Scholar 

  142. 142.

    Zheng, R., Qian, S., Cheng, X., Yu, H., Peng, N., Liu, T., Zhang, J., Xia, M., Zhu, H., Shu, J.: FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy 58, 399–409 (2019)

    Article  CAS  Google Scholar 

  143. 143.

    Griffith, K.J., Wiaderek, K.M., Cibin, G., Marbella, L.E., Grey, C.P.: Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559, 556–563 (2018)

    PubMed  Article  CAS  Google Scholar 

  144. 144.

    Liu, Y., Wan, H., Zhang, H., Chen, J., Fang, F., Jiang, N., Zhang, W., Zhou, F., Arandiyan, H., Wang, Y., Liu, G., Wang, Z., Luo, S., Chen, X., Sun, H.: Engineering surface structure and defect chemistry of nanoscale cubic Co3O4 crystallites for enhanced lithium and sodium storage. ACS Appl. Nano Mater. 3, 3892–3903 (2020)

    Article  CAS  Google Scholar 

  145. 145.

    Yan, L., Chen, G., Sarker, S., Richins, S., Wang, H., Xu, W., Rui, X., Luo, H.: Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl. Mater. Interfaces. 8, 22213–22219 (2016)

    PubMed  Article  CAS  Google Scholar 

  146. 146.

    Gogotsi, Y., Penner, R.M.: Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018)

    PubMed  Article  CAS  Google Scholar 

  147. 147.

    Kim, H., Lim, E., Jo, C., Yoon, G., Hwang, J., Jeong, S., Lee, J., Kang, K.: Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy 16, 62–70 (2015)

    Article  CAS  Google Scholar 

  148. 148.

    Liu, F., Cheng, X., Xu, R., Wu, Y., Jiang, Y., Yu, Y.: Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv. Funct. Mater. 28, 1800394 (2018)

    Article  CAS  Google Scholar 

  149. 149.

    Yang, H., Xu, R., Gong, Y., Yao, Y., Gu, L., Yu, Y.: An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy 48, 448–455 (2018)

    Article  CAS  Google Scholar 

  150. 150.

    Wang, L., Bi, X., Yang, S.: Synergic antimony-niobium pentoxide nanomeshes for high-rate sodium storage. J. Mater. Chem. A 6, 6225–6232 (2018)

    Article  CAS  Google Scholar 

  151. 151.

    Deng, Q., Chen, F., Liu, S., Bayaguud, A., Feng, Y., Zhang, Z., Fu, Y., Yu, Y., Zhu, C.: Advantageous functional integration of adsorption-intercalation-conversion hybrid mechanisms in 3D flexible Nb2O5@hard carbon@MoS2@soft carbon fiber paper anodes for ultrafast and super-stable sodium storage. Adv. Funct. Mater. 30, 1908665 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51771046, and 51971055) and Northeast Petroleum University “National Fund” Cultivation Fund Project (2018GPQ2-10).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yanlong Yu or Yanguo Liu or Hongyu Sun or Hamidreza Arandiyan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, P., Zhang, B., Wang, Y. et al. Nanoscale niobium oxides anode for electrochemical lithium and sodium storage: a review of recent improvements. J Nanostruct Chem (2020). https://doi.org/10.1007/s40097-020-00367-5

Download citation

Keywords

  • Niobium oxides
  • Nanostructures
  • Lithium storage
  • Sodium storage