Bimetallic-metal oxide nanoparticles of Pt-M (M: W, Mo, and V) supported on reduced graphene oxide (rGO): radiolytic synthesis and methanol oxidation electrocatalysis


Nanocatalysts of Pt and Pt-M (M: V, MO and W) supported on rGO were successfully synthesized via a simple process based on irradiation and investigated as electrocatalysts in terms of methanol oxidation in acidic medium. Morphology, purity and composition of the catalysts were analyzed by ICP, TEM, XRD, and EDX. Irradiation caused the metallic nanoparticles (from 1 to 8 nm in diameter) to be deposited on the graphene sheets without using any stabilizer and surfactant. Bimetallic nanocatalysts exhibited higher electrochemical activities of methanol oxidation comparing to monolithic Pt catalyst at ambient temperature. A considerable increase in the effective active surface area (ECSA) was observed when the tungsten was used as the second metal; this value was in the order of Pt-Mo > Pt-V > Pt for other catalysts. Finally, high catalytic activity, great durability, and stability of Pt-W offer it to be a promising electrocatalyst for development of more advanced direct alcohol fuel cells.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Golikand, A.N., Maragheh, M.G., Sherehjini, S.S., Taghi-Ganji, K.M., Yari, M.: Carbon-supported Pt particles as a catalyst for electrooxidation of methanol and cyclic voltammetry studies under acidic conditions. Electroanalysis 18(9), 911–917 (2006)

    CAS  Article  Google Scholar 

  2. 2.

    Chang, X., Dong, F., Yang, S., Tang, Z., Zha, F.: Well dispersed Pt nanoparticles on commercial carbon black oxidized by ozone possess significantly high electro-catalytic activity for methanol oxidation. Int. J. Hydrog. Energy 44(39), 21559–21568 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    Bessel, C.A., Laubernds, K., Rodriguez, N.M., Baker, R.T.K.: Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B 105(6), 1115–1118 (2001)

    CAS  Article  Google Scholar 

  4. 4.

    Themsirimongkon, S., Sarakonsri, T., Lapanantnoppakhun, S., Jakmunee, J., Saipanya, S.: Carbon nanotube-supported Pt-alloyed metal anode catalysts for methanol and ethanol oxidation. Int. J. Hydrog. Energy 44(58), 30719–30731 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    Wu, G., Xu, B.Q.: Carbon nanotube supported Pt electrodes for methanol oxidation: a comparison between multi-and single-walled carbon nanotubes. J. Power Sour. 174(1), 148–158 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    Ali, A., Shen, P.K.: Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 7(39), 22189–22217 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    Zhang, J., Nan, L., Yue, W., Chen, X.: Enhanced methanol electro-oxidation activity of electrochemically exfoliated graphene-Pt through polyaniline modification. J. Electroanal. Chem. 858, 113821 (2020)

    CAS  Article  Google Scholar 

  8. 8.

    Golikand, A.N., Bagherzadeh, M., Shirazi, Z.: Evaluation of the polyaniline based nanocomposite modified with graphene nanosheet, carbon nanotube, and Pt nanoparticle as a material for supercapacitor. Electrochim. Acta 247, 116–124 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    Han, Z., Wang, A.J., Zhang, L., Wang, Z.G., Fang, K.M., Yin, Z.Z., Feng, J.J.: 3D highly branched PtCoRh nanoassemblies: glycine-assisted solvothermal synthesis and superior catalytic activity for alcohol oxidation. J. Colloid Interface Sci. 554, 512–519 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Çögenli, M.S., Yurtcan, A.B.: Heteroatom doped 3D graphene aerogel supported catalysts for formic acid and methanol oxidation. Int. J. Hydrog. Energy 45(1), 650–666 (2020)

    Article  CAS  Google Scholar 

  11. 11.

    Golikand, A.N., Irannejad, L.: Electroreduction of oxygen and electrooxidation of methanol at carbon and single wall carbon nanotube supported platinum electrodes. Electroanalysis 20(10), 1121–1127 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    Golikand, A.N., Lohrasbi, E., Maragheh, M.G., Asgari, M.: Carbon nano-tube supported Pt–Pd as methanol-resistant oxygen reduction electrocatalyts for enhancing catalytic activity in DMFCs. J. Appl. Electrochem. 39(12), 2421 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    Feng, Y.Y., Hu, H.S., Song, G.H., Si, S., Liu, R.J., Peng, D.N., Kong, D.S.: Promotion effects of CeO2 with different morphologies to Pt catalyst toward methanol electrooxidation reaction. J. Alloys Compd. 798, 706–713 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    Hu, Y., Wu, P., Yin, Y., Zhang, H., Cai, C.: Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl. Catal. B 111, 208–217 (2012)

    Article  CAS  Google Scholar 

  15. 15.

    Feng, Y.G., Niu, H.J., Mei, L.P., Feng, J.J., Fang, K.M., Wang, A.J.: Engineering 3D hierarchical thorn-like PtPdNiCu alloyed nanotripods with enhanced performances for methanol and ethanol electrooxidation. J. Colloid Interface Sci. 575, 425–432 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Cui, Y., Ying, S., Cai, H., Wei, Y., Hu, C.: Highly active Pt-Co/C nanoparticles: controllable preparation and catalytic performance for methanol electro-oxidation. Int. J. Electrochem. Sci. 15, 3750–3760 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    Zhang, L., Zhang, X.F., Chen, X.L., Wang, A.J., Han, D.M., Wang, Z.G., Feng, J.J.: Facile solvothermal synthesis of Pt71Co29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions. J. Colloid Interface Sci. 536, 556–562 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Long, X., Yin, P., Lei, T., Wang, K., Zhan, Z.: Methanol electro-oxidation on Cu@ Pt/C core-shell catalyst derived from Cu-MOF. Appl. Catal. B 260, 118187 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    Eshghi, A., Sabzehmeidani, M.M.: Platinum–Iron nanoparticles supported on reduced graphene oxide as an improved catalyst for methanol electro oxidation. Int. J. Hydrog. Energy 43(12), 6107–6116 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    Ji, Z., Zhu, G., Shen, X., Zhou, H., Wu, C., Wang, M.: Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J. Chem. 36(9), 1774–1780 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    Anderson, A.B., Grantscharova, E., Seong, S.: Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance. J. Electrochem. Soc. 143(6), 2075 (1996)

    CAS  Article  Google Scholar 

  22. 22.

    Ley, K.L., Liu, R., Pu, C., Fan, Q., Leyarovska, N., Segre, C., Smotkin, E.S.: Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. J. Electrochem. Soc. 144(5), 1543 (1997)

    CAS  Article  Google Scholar 

  23. 23.

    Ehteshami, S.M.M., Chan, S.H.: A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells. Electrochim. Acta 93, 334–345 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    Kang, S.M., Kwak, C.H., Rethinasabapathy, M., Jang, S.C., Choe, S.R., Roh, C., Han, Y.K., Huh, Y.S.: Gamma radiation mediated green technology for Pd nanoparticles recovery from wastewater. Sep. Purif. Technol. 197, 220–227 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Čubová, K., Čuba, V.: Synthesis of inorganic nanoparticles by ionizing radiation–a review. Radiat. Phys. Chem. 169, 108774 (2020)

    Article  CAS  Google Scholar 

  26. 26.

    Flores-Rojas, G.G., López-Saucedo, F., Bucio, E.: Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: a short review. Radiat. Phys. Chem. 169, 107962 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    Abedini, A., Daud, A.R., Hamid, M.A.A., Othman, N.K., Saion, E.: A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett. 8(1), 474 (2013)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Seino, S., Kinoshita, T., Otome, Y., Maki, T., Nakagawa, T., Okitsu, K., Mizukoshi, Y., Nakayama, T., Sekino, T., Niihara, K., Yamamoto, T.A.: γ-ray synthesis of composite nanoparticles of noble metals and magnetic iron oxides. Scr. Mater. 51(6), 467–472 (2004)

    CAS  Article  Google Scholar 

  29. 29.

    Zhao, H., Li, Z., Zhang, N., Du, Y., Li, S., Shao, L., Gao, D., Han, X., Xu, P.: γ-irradiation induced one-step synthesis of electromagnetic functionalized reduced graphene oxide–Ni nanocomposites. RSC Adv. 4(57), 30467–30470 (2014)

    CAS  Article  Google Scholar 

  30. 30.

    Wang, H., Sun, X., Ye, Y., Qiu, S.: Radiation induced synthesis of Pt nanoparticles supported on carbon nanotubes. J. Power Sour 161(2), 839–842 (2006)

    CAS  Article  Google Scholar 

  31. 31.

    Chai, G.S., Fang, B., Yu, J.S.: γ-Ray irradiation as highly efficient approach for synthesis of supported high Pt loading cathode catalyst for application in direct methanol fuel cell. Electrochem. Commun. 10(11), 1801–1804 (2008)

    CAS  Article  Google Scholar 

  32. 32.

    Park, H.Y., Yang, D.S., Bhattacharjya, D., Song, M.Y., Yu, J.S.: A highly efficient carbon-supported Pt electrocatalyst prepared by γ-irradiation for cathodic oxygen reduction. Int. J. Hydrog. Energy. 39(4), 1688–1697 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    Safibonab, B., Reyhani, A., Golikand, A.N., Mortazavi, S.Z., Mirershadi, S., Ghoranneviss, M.: Improving the surface properties of multi-walled carbon nanotubes after irradiation with gamma rays. Appl. Surf. Sci. 258(2), 766–773 (2011)

    CAS  Article  Google Scholar 

  34. 34.

    Nobahari, M.H., Nozad Golikand, A., Bagherzadeh, M.: Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation. Iran. J. Catal. 7(4), 327–335 (2017)

    CAS  Google Scholar 

  35. 35.

    Sheikh-Mohseni, M.H., Sedaghat, S., Derakhshi, P., Safekordi, A.: Green bio-synthesis of Ni/Montmorillonite nanocomposite using extract of Allium jesdianum as the nano-catalyst for electrocatalytic oxidation of methanol. Chin. J. Chem. Eng. (2020)

  36. 36.

    Geng, X., Cen, Y., Sisson, R.D., Liang, J.: An effective approach towards the immobilization of PtSn nanoparticles on noncovalent modified multi-walled carbon nanotubes for ethanol electrooxidation. Energies 9(3), 165 (2016)

    Article  CAS  Google Scholar 

  37. 37.

    Brković, S.M., Nikolić, V.M., Kaninski, M.P.M., Pašti, I.A.: Pt/C catalyst impregnated with tungsten-oxide–Hydrogen oxidation reaction vs CO tolerance. Int. J. Hydrog. Energy 44(26), 13364–13372 (2019)

    Article  CAS  Google Scholar 

  38. 38.

    Geng, X.: synthesis and characterization of nanostructured carbon supported Pt-based electrocatalysts. Doctoral dissertation, Worcester Polytechnic Institute (2012).

  39. 39.

    Feng, L., Guo, G., Peng, H., Xiansong, W., Chunlei, Zh., Jiali, Zh., Shouwu, G., Daxiang, C.: Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation. Nanoscale Res. Lett. 6, 551 (2011)

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Zhen-Bo, W., Peng-jian, Z., Ge-Ping, Y.: Effect of W on activity of Pt–Ru/C catalyst for methanol electrooxidation in acidic medium. J. Alloys Compd. 479, 395–400 (2009)

    Article  CAS  Google Scholar 

  41. 41.

    Zhang, J.J., Sui, X.L., Zhao, L., Zhang, L.M., Gum, D.M., Wang, Z.B.: Hybrid of molybdenum trioxide and carbon as high performance platinum catalyst support for methanol electrooxidation. Int. J. Hydrog. Energy 42(4), 2045–2053 (2017)

    CAS  Article  Google Scholar 

  42. 42.

    Sheng-wen, Z., Xian-chao, H., Yuan, Y., Chang-lin, Y., Yang, Z.: Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation. J. Fuel Chem. Technol. 46(5), 585–591 (2018)

    Article  Google Scholar 

  43. 43.

    Fu, X., Zhang, Y., Cao, P., Ma, H., Liu, P., He, L., Peng, J., Li, J., Zhai, M.: Radiation synthesis of CdS/reduced graphene oxide nanocomposites for visible-light-driven photocatalytic degradation of organic contaminant. Radiat. Phys. Chem. 123, 79–86 (2016)

    CAS  Article  Google Scholar 

  44. 44.

    Zhou, L., Gu, H., Wang, C., Zhang, J., Lv, M., He, R.: Study on the synthesis and surface enhanced Raman spectroscopy of graphene-based nanocomposites decorated with noble metal nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 430, 103–109 (2013)

    CAS  Article  Google Scholar 

  45. 45.

    Wang, Z.B., Zuo, P.J., Yin, G.P.: Effect of W on activity of Pt–Ru/C catalyst for methanol electrooxidation in acidic medium. J. Alloys Compd. 479(1–2), 395–400 (2009)

    CAS  Article  Google Scholar 

  46. 46.

    Lim, T., Kim, O.H., Sung, Y.E., Kim, H.J., Lee, H.N., Cho, Y.H., Kwon, O.J.: Preparation of onion-like Pt-terminated Pt–Cu bimetallic nano-sized electrocatalysts for oxygen reduction reaction in fuel cells. J. Power Sour. 316, 124–131 (2016)

    CAS  Article  Google Scholar 

  47. 47.

    Wang, Z., Xie, W., Zhang, F., Xia, J., Gong, S., Xia, Y.: Facile synthesis of PtPdPt nanocatalysts for methanol oxidation in alkaline solution. Electrochim. Acta 192, 400–406 (2016)

    CAS  Article  Google Scholar 

  48. 48.

    Belloni, J., Mostafavi, M., Remita, H., Marignier, J.L., Delcourt, M.O.: Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids. New J. Chem. 22(11), 1239–1255 (1998)

    CAS  Article  Google Scholar 

  49. 49.

    Radzi-Hanifah, M.F., Rahman, M.A., Jaafar, J., Othman, M.H.D., Ismail, A.F., Yusof, N., Aziz, F., Abd-Rahman, N.A.: One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic performance toward methanol electro-oxidation reaction in direct methanol fuel cell. J. Alloys Compd. 739, 232–246 (2019)

    Article  CAS  Google Scholar 

  50. 50.

    Kai, J., Gang, C., Munetaka, O., Xunzhong, S., Xiong, L., Yunbin, H.: Efficient and clean synthesis of graphene and supported platinum nanoclusters its application in direct methanol fuel cell. Electrochim. Acta 85, 84–89 (2012)

    Article  CAS  Google Scholar 

  51. 51.

    Long, N.V., Ohtaki, M., Hien, T.D., Randy, J., Nogami, M.: A comparative study of Pt and Pt–Pd core–shell nanocatalysts. Electrochim. Acta 56, 9133–9143 (2011)

    Article  CAS  Google Scholar 

  52. 52.

    Justin, P., Rao, G.R.: Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int. J. Hydrog. Energy 36(10), 5875–5884 (2011)

    CAS  Article  Google Scholar 

  53. 53.

    Shaozhen, W., Long, K., Yucheng, H., Xue, Y., Yadong, L., Wenzheng, L., Lu, Ch., Baoyou, G.: A highly efficient, clean-surface, porous platinum electrocatalyst and the inhibition effect of surfactants on catalytic activity. Chem. Eur. J. 19, 240–248 (2013)

    Article  CAS  Google Scholar 

  54. 54.

    Cui, Z., Xing, W., Liu, C., Tian, D., Zhang, H.: Synthesis and characterization of H5PMo10V2O40 deposited Pt/C nanocatalysts for methanol electrooxidation. J. Power Sources 195(6), 1619–1623 (2010)

    CAS  Article  Google Scholar 

  55. 55.

    Ma, L., Zhao, X., Si, F., Liu, C., Liao, J., Liang, L., Xing, W.: A comparative study of Pt/C and Pt–MoOx/C catalysts with various compositions for methanol electro-oxidation. Electrochim. Acta 55(28), 9105–9112 (2010)

    CAS  Article  Google Scholar 

  56. 56.

    Xu, J., Hua, K., Sun, G., Wang, C., Lv, X., Wang, Y.: Electrooxidation of methanol on carbon nanotubes supported Pt–Fe alloy electrode. Electrochem. commun. 8(6), 982–986 (2006)

    CAS  Article  Google Scholar 

  57. 57.

    Zhou, Z.H., Li, W.S., Fu, Z., Xiang, X.D.: Carbon nanotube-supported Pt-HxMoO3 as electrocatalyst for methanol oxidation. Int. J. Hydrog. Energy 35(3), 936–941 (2010)

    CAS  Article  Google Scholar 

  58. 58.

    Maiyalagan, T., Khan, F.N.: Electrochemical oxidation of methanol on Pt/V2O5–C composite catalysts. Catal. Commun. 10(5), 433–436 (2009)

    CAS  Article  Google Scholar 

  59. 59.

    Nouralishahi, A., Khodadadi, A.A., Rashidi, A.M., Mortazavi, Y.: Vanadium oxide decorated carbon nanotubes as a promising support of Pt nanoparticles for methanol electro-oxidation reaction. J. Colloid Interface Sci. 393, 291–299 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Cui, Z., Feng, L., Liu, C., Xing, W.: Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation. J. Power Sources 196(5), 2621–2626 (2011)

    CAS  Article  Google Scholar 

  61. 61.

    Yaldagard, M., Jahanshahi, M., Seghatoleslami, N.: Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC. Appl. Surf. Sci. 317, 496–504 (2014)

    CAS  Article  Google Scholar 

  62. 62.

    Park, S.H., Jung, H.M., Um, S., Song, Y.W., Kim, H.S.: Rapid synthesis of Pt-based alloy/carbon nanotube catalysts for a direct methanol fuel cell using flash light irradiation. Int. J. Hydrog. Energy 37(17), 12597–12604 (2012)

    CAS  Article  Google Scholar 

  63. 63.

    Singh, B., Murad, L., Laffir, F., Dickinson, C., Dempsey, E.: Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media. Nanoscale 3(8), 3334–3349 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Suwaphid, T., Kontad, O., Surin, S.: Electrocatalytic enhancement of platinum and palladium metal on polydopamine reduced graphene oxide support for alcohol oxidation. J. Colloid Interface Sci. 530, 98–112 (2018)

    Article  CAS  Google Scholar 

  65. 65.

    Ojani, R., Hasheminejad, E., Raoof, J.B.: Direct growth of 3D flower-like Pt nanostructures by a template-free electrochemical route as an efficient electrocatalyst for methanol oxidation reaction. Energy 90, 1122–1131 (2015)

    CAS  Article  Google Scholar 

  66. 66.

    Dutta, A., Mahapatra, S.S., Datta, J.: High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrog. Energy. 36(22), 14898–14906 (2011)

    CAS  Article  Google Scholar 

  67. 67.

    Salazar-Banda, G.R., Suffredini, H.B., Calegaro, M.L., Tanimoto, S.T., Avaca, L.A.: Sol–gel-modified boron-doped diamond surfaces for methanol and ethanol electro-oxidation in acid medium. J. Power Sources 162(1), 9–20 (2006)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bahman ZareNezhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kianfar, S., Golikand, A.N. & ZareNezhad, B. Bimetallic-metal oxide nanoparticles of Pt-M (M: W, Mo, and V) supported on reduced graphene oxide (rGO): radiolytic synthesis and methanol oxidation electrocatalysis. J Nanostruct Chem (2020).

Download citation


  • Bimetallic nanocatalyst
  • Irradiation synthesis
  • Methanol oxidation
  • Electrochemical activity