Biogenic zinc oxide, copper oxide and selenium nanoparticles: preparation, characterization and their anti-bacterial activity against Vibrio parahaemolyticus

Abstract

The present study investigates biogenic preparation of zinc oxide (ZnO), copper oxide (CuO) and selenium (Se) nanoparticles using the marine brown alga Sargassum swartzii. The prepared nanomaterials were characterized using X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and UV–Vis diffuse reflectance spectroscopy (DRS-UV) analysis. The particle size of biogenic ZnO, CuO and Se nanoparticles was ca. 32, 32 and 21 nm, respectively. The isolation of bacterial pathogenic strain Vibrio parahaemolyticus (V. parahaemolyticus) from the diseased shrimp and virulent genes (toxR and tlh) confirmed by PCR technique. Further, the molecular characterized using 16S ribosomal RNA gene sequences and identified new strain V. parahaemolyticus strain (GRCORNICRA001). Anti-bacterial activity of biogenic nanomaterials (ZnO, CuO and Se) was investigated against isolated V. parahaemolyticus using well diffusion method and growth inhibitory assay. The minimum inhibitory concentration (MIC) was 25, 25 and 10 µg mL−1 of ZnO, CuO and Se nanoparticles, respectively. The results show that there is a strong bacterial inhibition in a dose-dependent manner. Further, SEM analysis revealed that the interaction of nanomaterials with V. parahaemolyticus, resulted in a surface tension change that leads to membrane depolarization, formation of abnormal textures such as membrane rupture, membrane blebs, membrane clumping, and also caused cell death. Results of this effort highlighted the way for the future that these nanomaterials incorporated with shrimp feed for the management of aquatic diseases.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kumar, B.K., Deekshit, V.K., Raj, J.R.M., Rai, P., Shivanagowda, B.M., Karunasagar, I., Karunasagar, I.: Diversity of Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Aquaculture 433, 247–251 (2014)

    Article  Google Scholar 

  2. 2.

    De Schryver, P., Defoirdt, T., Sorgeloos, P.: Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLOS Pathog. 10, e1003919 (2014)

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Lightner, D.V., Redman, R.M., Pantoja, C.R., Noble, B.L., Tran, L.H.: Early mortality syndrome affects shrimp in Asia. Glob. Aquacult. 15, 40 (2012)

    Google Scholar 

  4. 4.

    FAO.: Report of the FAO/MARD technical workshop on early mortality syndrome (EMS) or acute hepatopancreatic necrosis syndrome (AHPND) of cultured shrimp (under TCP/VIE/3304), 2013. Hanoi, Viet Nam, 25–27 June 2013. FAO Fisheries and Aquaculture Report No. 1053. Rome, Italy, pp. 54 (2013)

  5. 5.

    Heuer, O.E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., Angulo, F.J.: Human health consequences of use of antimicrobial agents in aquaculture. Clin. Infect. Dis. 49, 1248–1253 (2009)

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Romero, J., Gloria, C., Navarrete, P.: Antibiotics in Aquaculture–Use, Abuse and Alternatives, in Health and Environment in Aquaculture. IntechOpen, London (2012)

    Google Scholar 

  7. 7.

    Rathna Kumari, P., Kolanchinathan, P., Siva, D., Abirami, B., Masilamani, V., John, G., Achiraman, S., Balasundaram, A.: Antibacterial efficacy of seagrass Cymodocea serrulata engineered silver nanoparticles against prawn pathogen Vibrio parahaemolyticus and its combative effect on the marine shrimp Penaeus monodon. Aquaculture 493, 158–164 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    Kumar, R., Ng, T.H., Wang, H.C.: Acute hepatopancreatic necrosis disease in penaeid shrimp. Rev. Aquacult. 12, 1867–1880 (2020)

    Article  Google Scholar 

  9. 9.

    Ometto, F.B., Carbonio, E.A., Teixeira-Neto, E., Villullas, H.M.: Changes induced by transition metal oxides in Pt nanoparticles unveil the effects of electronic properties on oxygen reduction activity. J. Mater. Chem. A 7, 2075–2086 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    George, J.M., Antony, A., Mathew, B.: Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Microchim. Acta 185, 358 (2018)

    Article  CAS  Google Scholar 

  11. 11.

    Akbari, A., Amini, M., Tarassoli, A., Eftekhari-Sis, B., Ghasemian, N., Jabbari, E.: Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct. Nano-Objects 14, 19–48 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    Zak, A.K., Majid, W.H., Abhrishami, M.E., Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011)

    Article  CAS  Google Scholar 

  13. 13.

    Abo-zeid, Y., Williams, G.R.: The potential anti-infective applications of metal oxide nanoparticles: A systematic review. Wires Nanomed. Nanobiotechnol. 12, e1592 (2020)

    Article  Google Scholar 

  14. 14.

    Hosseini-Koupaei, M., Shareghi, B., Saboury, A.A., Davar, F., Sirotkin, V.A., Hosseini-Koupaei, M.H.: Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles. Int. J. Biol. Macromol. 122, 732–744 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N., Kannadasan, N.: Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater. Sci. Semicond. Process. 39, 621–628 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    Sutradhar, P., Saha, M., Maiti, D.: Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostruct. Chem. 4, 86 (2014)

    Article  Google Scholar 

  17. 17.

    Yusof, A.M., Yusan, S.: Synthesis and structural properties of nanoselenium-supported MCM-41 material. Syn. React. Inorg. Met. Org. Nano-Met. Chem. 46, 747–753 (2015)

    Article  CAS  Google Scholar 

  18. 18.

    Gautam, P.K., Kumar, S., Tomar, M.S., Singh, R.K., Acharya, A., Kumar, S., Ram, B.: Selenium nanoparticles induce suppressed function of tumor associated macrophages and inhibit Dalton’s lymphoma proliferation. Biochem. Biophys. Rep. 12, 172–184 (2017)

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Adil, S.F., Assal, M.E., Khan, M., Al-Warthan, A., Siddiqui, M.R.H., Liz-Marzán, L.M.: Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans. 44, 9709–9717 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Hulkoti, N.I., Taranath, T.C.: Biosynthesis of nanoparticles using microbes-A review. Colloids and Surf. B: Biointerf. 121, 474–483 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    Bresien, J., Hinz, A., Schulz, A., Villinger, A.: Trapping of transient, heavy pnictogen-centred biradicals. Dalton Trans. 47, 4433–4436 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Govindaraju, K., Kiruthiga, V., Ganesh, K.V., Singaravelu, G.: Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightiiGreville and their antibacterial effects. J. Nanosci. Nanotechnol. 9, 5497–5501 (2009)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Uma, K.S., Govindaraju, K., Ganesh, K.V., Stalin, D.T., Karthick, V., Singaravelu, G., Elanchezhiyan, M.: Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients. Spectrochim. Acta Part A. 144, 266–272 (2015)

    Article  CAS  Google Scholar 

  24. 24.

    Govindaraju, K., Karthikeyan, K., Alsagaby, S., Singaravelu, G., Premanathan, M.: Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol. 9, 325–330 (2015)

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Uma Suganya, K.S., Govindaraju, K., Ganesh Kumar, V., Karthick, V., Krupakar, P.: Pectin mediated gold nanoparticles induces apoptosis in mammary adenocarcinoma cell lines. Int. J. Biol. Macromol. 93, 1030–1040 (2016)

    Article  CAS  Google Scholar 

  26. 26.

    Venkatachalam, M., Govindaraju, K., Mohamed, S.A., Tamilselvan, S., Ganesh, K.V., Singaravelu, G.: Functionalization of gold nanoparticles as anti-diabetic nanomaterial. Spectrochim. Acta Part A. 116, 331–336 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    Khaleel Basha, S., Govindaraju, K., Manikandan, R., Ahn, J.S., Bae, E.Y., Singaravelu, G.: Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf. B 75, 405–409 (2010)

    CAS  Article  Google Scholar 

  28. 28.

    Vinodhini, A., Govindaraju, K., Singaravelu, G., Mohamed, S.A., Ganesh, K.V.: Cardioprotective potential of biobased gold nanoparticles. Colloids Surf. B 117, 480–486 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    Prerna, D.I., Govindaraju, K., Tamilselvan, S., Kannan, M., Raja, K., Subramanian, K.S.: Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). J. Plant Growth Regul. 39, 717–728 (2020)

    Article  CAS  Google Scholar 

  30. 30.

    Govindaraju, K., Tamilselvan, S., Kannan, M., Kathickeyan, D., Doron, S., Sumit, C.: Nano-micronutrients [γ-Fe2O3 (iron) and ZnO (zinc)]: green preparation, characterization, agro-morphological characteristics and crop productivity studies in two crops (rice and maize). New J. Chem. 44, 11373–11383 (2020)

    Article  Google Scholar 

  31. 31.

    Singaravelu, G., Arockiayamari, J.S., Ganesh Kumar, V., Govindaraju, K.: A novel extracellular synthesis of monodisperse gold nanoparticles using marine algae, Sargassum wightii. Colloids Surf. B 57, 97–101 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    Wijesekara, I., Pangestuti, R., Kim, S.K.: Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 84, 14–21 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    Vasantharaja, R., Stanley Abraham, L., Jyotsna, J., Seedevi, P., Sathishkannan, G., Thirugnanasambandam, R., Kirubagaran, R.: Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model. Carbohydr. Polym. 203, 441–449 (2019)

    Article  CAS  Google Scholar 

  34. 34.

    Rather, M.A., Sharma, R., Aklakur, M., Ahmad, S., Kumar, N., Khan, M., Ramya, V.L.: Nanotechnology: A novel tool for aquaculture and fisheries development-A prospective mini-review. Fisheries Aquacult. J. 16, 1–5 (2011)

    Google Scholar 

  35. 35.

    Govindaraju, K., Prerna, D.I., Veeramani, V., Ashok, T.K., Tamilselvan, S.: Application of nanotechnology in diagnosis and disease management of white spot syndrome virus (WSSV) in aquaculture. J. Clust. Sci. 31, 1163–1171 (2020)

    CAS  Article  Google Scholar 

  36. 36.

    Kulabhusan, P.K., Rajwade, J.M., Vimal, S., Taju, G., Sahul Hameed, A.S., Paknikar, K.M.: Field-usable lateral flow immunoassay for the rapid detection of white spot syndrome virus (WSSV). PLoS ONE 12, e0169012 (2017)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Zhou, X., Wang, Y., Gu, Q., Li, W.: Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291, 78–81 (2009)

    CAS  Article  Google Scholar 

  38. 38.

    Rather, M.A., Sharma, R., Gupta, S., Ferosekhan, S., Ramya, V.L., Jadhao, S.B.: Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PLoS ONE 8, e57094 (2013)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Rajesh Kumar, S., Ishaq Ahmed, V.P., Parameswaran, V., Sudhakaran, R., Sarath Babu, V., Sahul Hameed, A.S.: Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish. Immunol. 25, 47–56 (2008)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    National Research Council: Nutrient Requirements of Fish and Shrimp. The National Academies Press, Washington (2011)

    Google Scholar 

  41. 41.

    Muthamil Selvan, S., Vijai Anand, K., Govindaraju, K., Tamilselvan, S., Ganesh Kumar, V., Subramanian, K.S., Kannan, M., Raja, K.: Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET Nanobiotechnol. 12, 1042–1046 (2018)

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Soto-Rodriguez, S.A., Gomez-Gil, B., Lozano, R., del Rio-Rodriguez, R., Dieguez, A.L., Romalde, J.L.: Virulence of Vibrio harveyi responsible for the ‘“Bright-red”’ syndrome in the Pacific white shrimp Litopenaeus vannamei. J. Invert. Pathol. 109, 307–317 (2012)

    Article  Google Scholar 

  43. 43.

    Ananda Raja, R., Sridhar, R., Balachandran, C., Palanisammi, A., Ramesh, S., Nagarajan, K.: Pathogenicity profile of Vibrio parahaemolyticus in farmed Pacific white shrimp Penaeus vannamei. Fish Shellfish. Immunol. 67, 368–381 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Alsina, M., Blanch, A.R.: A set of keys for biochemical identification of environmental Vibrio species. J. Appl. Bacteriol. 76, 79–85 (1994)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Felsenstein, J.: Conference limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G.: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Tamura, K., Nei, M., Kumar, S.: Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Nat. Acad. Sci. USA 101, 11030–11035 (2004)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Arakha, M., Saleem, M., Mallick, B.C., Jha, S.: The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 5, 9578 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Wahab, R., Ansari, S., Kim, Y., Seo, H., Kim, G., Khang, G., Shin, H.S.: Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42, 1640–1648 (2007)

    CAS  Article  Google Scholar 

  51. 51.

    Zeng, X., Yang, J., Shi, L., Li, L., Gao, M.: Synthesis of multi-shelled ZnO hollow microspheres and their improved photocatalytic activity. Nanoscale Res. Lett. 9, 468 (2014)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Prakash, T., Jayaprakash, R., Neri, G., Kumar, S.: Synthesis of ZnO nanostructures by microwave irradiation using albumen as a template. J. Nanopart. 2013, 274894 (2013)

    Article  CAS  Google Scholar 

  53. 53.

    Zak, A.K., Abrishami, M.E., Abd Majid, W.H., Yousefi, R., Hosseini, S.M.: Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceramic Int. 37, 393–398 (2011)

    CAS  Article  Google Scholar 

  54. 54.

    Mishra, R.R., Prajapati, S., Das, J., Dangar, T.K., Das, N., Thatoi, H.: Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84, 1231–1237 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Tiquia-Arashiro, S., Rodrigues, D.: Extremophiles: Applications in nanotechnology. Springer, Cham (2017)

    Google Scholar 

  56. 56.

    Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., Memic, A.: Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int. J. Nanomed. 7, 3527–3535 (2012)

    CAS  Article  Google Scholar 

  57. 57.

    Saeed, M., Ansari, M.T., Kaleem, I., Bajwa, S.Z., Rehman, A., Bano, K., Tehseen, B., Jamil, N., Zahoor, M., Shaheen, A., Taj, A., Younis, M.R., Khan, W.S.: Assessment of antimicrobial features of selenium nanoparticles (SeNPs) using cyclic voltammetric strategy. J. Nanosci. Nanotechnol. 19, 7363–7368 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Vijai Anand, K., Karl Chinnu, M., Mohan Kumar, R., Mohan, R., Jayavel, R.: Formation of zinc sulfide nanoparticles in HMTA matrix. Appl. Surf. Sci. 255, 8879–8882 (2009)

    Article  CAS  Google Scholar 

  59. 59.

    Sirikharin, R., Taengchaiyaphum, S., Sanguanrut, P., Thanh, D.C., Mavichak, R., Proespraiwong, P., Nuangsaeng, B., Thitamadee, S., Flegel, T.W., Sritunyalucksana, K.: Characterization and PCR detection of binary, Pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS ONE 10, e0126987 (2015)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Uma Suganya, K.S., Govindaraju, K., Ganesh Kumar, V., Stalin Dhas, T., Karthick, V., Singaravelu, G., Elanchezhiyan, M.: Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater. Sci. Eng. C. 47, 351–356 (2015)

    CAS  Article  Google Scholar 

  61. 61.

    Ansari, M.A., Khan, H.M., Khan, A.A., Ahmad, M.K., Mahdi, A.A., Pal, R., Cameotra, S.S.: Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Basic Microbiol. 54, 905–915 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Stoimenov, P.K., Klinger, R.L., Marchin, G.L., Klabunde, K.J.: Metal oxide nanoparticles as bactericidal agents. Langmuir 18, 6679–6686 (2002)

    CAS  Article  Google Scholar 

  63. 63.

    Roy, A., Gauri, S.S., Bhattacharya, M., Bhattacharya, J.: Antimicrobial activity of CaO nanoparticles. J. Biomed. Nanotechnol. 9, 1570–1578 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Geoffrion, L.D., Hesabizadeh, T., Medina-Cruz, D., Kusper, M., Vernet-Crua, P.T.A., Chen, J., Ajo, A., Webster, T.J., Guisbiers, G.: Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega 5, 2660–2669 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Morales-Covarrubias, M.S., Garcia-Aguilar, N., Bolan-Mejia, M.C., Puello-Cruz, A.C.: Evaluation of medicinal plants and colloidal silver efficiency against Vibrio parahaemolyticus infection in Litopenaeus vannamei cultured at low salinity. Dis. Aquat. Org. 122, 57–65 (2016)

    CAS  Article  Google Scholar 

  66. 66.

    Sivaramasamy, E., Zhiwei, W.: Enhancement of vibriosis resistance in Litopenaeus vannamei by supplementation of biomastered silver nanoparticles by Bacillus subtilis. J. Nanomed. Nanotechnol. 7, 352 (2016)

    Article  CAS  Google Scholar 

  67. 67.

    Sivaramasamy, E., Zagorsek, K., Li, F., Xiang, J.: In situ synthesis of silver nanoparticles into TEMPO-mediated oxidized bacterial cellulose and their antivibriocidal activity against shrimp pathogens. Carbohydr. Polym. 166, 329–337 (2017)

    Article  CAS  Google Scholar 

  68. 68.

    Alvarez-Cirerol, F.J., Lopez-Torres, M.A., Rodriguez-Leon, E., Rodriguez-Beas, C., Martínez-Higuera, A., Lara, H.H., Vergara, S., Arellano-Jimenez, M.J., Larios-Rodriguez, E., Martínez-Porchas, M., Vega, E.R., Iniguez-Palomares, R.A.: Silver nanoparticles synthesized with Rumex hymenosepalus: A strategy to combat early mortality syndrome (EMS) in a cultivated white shrimp. J. Nanomater. 2019, 8214675 (2019)

    Article  CAS  Google Scholar 

  69. 69.

    Maldonado-Muniz, M., Luna, C., Mendoza-Resendez, R., Barriga-Castro, E.D., Soto-Rodriguez, S., Ricque-Marie, D., Cruz-Suarez, L.E.: Silver nanoparticles against acute hepatopancreatic necrosis disease (AHPND) in shrimp and their depuration kinetics. J. Appl. Phycol. 32, 2431–2445 (2020)

    CAS  Article  Google Scholar 

  70. 70.

    Dutta, R., Nenavathu, B.P., Gangishetty, M.K., Reddy, A.: Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf. B 94, 143–150 (2012)

    CAS  Article  Google Scholar 

  71. 71.

    Xie, Y., He, Y., Irwin, P.L., Jin, T., Shi, X.: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77, 2325–2331 (2011)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Rotini, A., Tornambe, A., Cossi, R., Iamunno, F., Benvenuto, G., Berducci, M.T., Maggi, C., Thaller, M.C., Cicero, A.M., Manfra, L., Migliore, L.: Salinity-based toxicity of CuO nanoparticles, CuO-bulk and Cu ion to Vibrio anguillarum. Front. Microbiol. 8, 2076 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Bogdanovic, U., Lazic, V., Vodnik, V., Budimir, M., Markovic, Z., Dimitrijevic, S.: Copper nanoparticles with high antimicrobial activity. Mater. Lett. 128, 75–78 (2014)

    CAS  Article  Google Scholar 

  74. 74.

    Vahdati, M., Moghadam, T.T.: Synthesis and characterization of selenium nanoparticles lysozyme nanohybrid system with synergistic antibacterial properties. Sci. Rep. 10, 510 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgement

We thank the National Innovations on Climate Resilient Agriculture (NICRA), Indian Council of Agricultural Research (ICAR), and the Government of India for their financial support (F.No.2-13(8)/19-20 NICRA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Govindaraju.

Ethics declarations

Conflict of interest

All authors sincerely declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1023 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinu, D., Govindaraju, K., Vasantharaja, R. et al. Biogenic zinc oxide, copper oxide and selenium nanoparticles: preparation, characterization and their anti-bacterial activity against Vibrio parahaemolyticus. J Nanostruct Chem (2020). https://doi.org/10.1007/s40097-020-00365-7

Download citation

Keywords

  • Seaweed
  • Nanomaterials
  • 16S ribosomal RNA sequences
  • Anti-bacterial activity
  • SEM