Single-step fabrication of Na-TUD-1 novel heterogeneous base nano-catalyst for Knoevenagel condensation reaction

Abstract

This research, for the first time, reports the design and development of a heterogeneous nano-catalyst based on sodium ions (Na+) incorporation in Technical University of Delft (TUD-1) mesoporous silica for Knoevenagel condensation reaction. Facile one-step fabrication of Na-TUD-1 nano-catalysts (varying Si/Na ratio as 100–5) was demonstrated using the sol–gel route. The catalytic performance of Na-TUD-1 was evaluated as a base heterogeneous catalyst in Knoevenagel condensation reaction, which took place under conventional and microwave irradiations conditions using ethanol as a solvent. Na-TUD-1 exhibited superior catalytic activity in comparison to available homogeneous base catalysts such as sodium ethoxide. The Na-TUD-1 nano-catalyst demonstrated identical performance till the fourth run along with high stability and negligible leaching of Na. Moreover, the use of microwave heating reduced the reaction time from 240 to 20 min only with a TOF of 0.58 min−1. Such excellent performance of Na-TUD-1 heterogeneous nano-catalysts will certainly increase its industrial acceptability to achieve affordable and efficient waste-effluent treatments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Sheldon, R., Arend, I., Hanefeld, U.: Catalysis in Novel Reaktion Media, pp. 295–328. Wiley, Weinheim (2007)

    Google Scholar 

  2. 2.

    Prout, F.S., Abdel-Latif, A.A., Kamal, M.R.: Catalyst study of the Knoevenagel condensation. J. Chem. Eng. Data. 8(4), 597–599 (1963)

    CAS  Article  Google Scholar 

  3. 3.

    Villemin, D., Jullien, A., Bar, N.: Optimisation of solvent free parallel synthesis under microwave irradiation: synthesis of new arylacrylonitriles. Green Chem. 5(4), 467–469 (2003)

    CAS  Article  Google Scholar 

  4. 4.

    Bogdał, D.: Coumarins: fast synthesis by Knoevenagel condensation under microwave irradiation. J. Chem. Res. Synopses. 9, 468–469 (1998)

    Article  Google Scholar 

  5. 5.

    Wada, S., Suzuki, H.: Calcite and fluorite as catalyst for the Knövenagel condensation of malononitrile and methyl cyanoacetate under solvent-free conditions. Tetrahed. Lett. 44(2), 399–401 (2003)

    CAS  Article  Google Scholar 

  6. 6.

    Hangarge, R.V., Jarikote, D.V., Shingare, M.S.: Knoevenagel condensation reactions in an ionic liquid. Green Chem. 4(3), 266–268 (2002)

    CAS  Article  Google Scholar 

  7. 7.

    Sebti, S.D., Smahi, A., Solhy, A.: Natural phosphate doped with potassium fluoride and modified with sodium nitrate: efficient catalysts for the Knoevenagel condensation. Tetrahed. Lett. 43(10), 1813–1815 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    Amantini, D., Fringuelli, F., Piermatti, O., Pizzo, F., Vaccaro, L.: Water, a clean, inexpensive, and re-usable reaction medium. One-pot synthesis of (E)-2-aryl-1-cyano-1-nitroethenes. Green Chem. 3(5), 229–232 (2001)

    CAS  Article  Google Scholar 

  9. 9.

    Zhang, X., Man Lai, E.S., Martin-Aranda, R., Yeung, K.L.: An investigation of Knoevenagel condensation reaction in microreactors using a new zeolite catalyst. Appl. Catal. A Gen. 261(1), 109–118 (2004)

    CAS  Article  Google Scholar 

  10. 10.

    Martins, L., Vieira, K.M., Rios, L.M., Cardoso, D.: Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations. Catal. Today 133–135, 706–710 (2008)

    Article  CAS  Google Scholar 

  11. 11.

    Mondal, J., Modak, A., Bhaumik, A.: Highly efficient mesoporous base catalyzed Knoevenagel condensation of different aromatic aldehydes with malononitrile and subsequent noncatalytic Diels-Alder reactions. J. Mo. Catal. A Chem. 335(1), 236–241 (2011)

    CAS  Article  Google Scholar 

  12. 12.

    Ruiz, N., del Rio, I., Jiménez, J.L., Claver, C., Forniés-Cámer, J., Cardin, C.C.J., et al.: High-branched selectivity in the palladium-catalysed alkoxycarbonylation of styrene in the presence of thiol–thioether atropisomeric ligands. J. Mol. Catal. A Chem. 143(1), 171–180 (1999)

    CAS  Article  Google Scholar 

  13. 13.

    Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horacek, M., Garcia, H., et al.: Catalytic performance of metal–organic-frameworks in Knoevenagel condensation. Catal. Sci. Technol. 3, 500–507 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    Choudary, B.M., Kantam, M.L., Sreekanth, P., Bandopadhyay, T., Figueras, F., Tuel, A.: Knoevenagel and aldol condensations catalysed by a new diamino-functionalised mesoporous material. J. Mol. Catalysis A Chem. 142(3), 361–365 (1999)

    CAS  Article  Google Scholar 

  15. 15.

    Xue, B., Wen, L.-Z., Ma, D., Li, M.-M., Xu, J.: Knoevenagel condensation reactions catalyzed by nitrogen-containing mesoporous carbon materials under mild reaction conditions. Res. Chem. Intermed. 44(12), 7641–7655 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    Jansen, J., Shan, Z., Marchese, L., Zhou, W., vd Puil, N., Maschmeyer, T.: A new templating method for three-dimensional mesopore networks. Chem. Commun. 8, 713–714 (2001)

    Article  Google Scholar 

  17. 17.

    Hamdy, M., Mul, G., Jansen, J., Ebaid, A., Shan, Z., Overweg, A., et al.: Synthesis, characterization, and unique catalytic performance of the mesoporous material Fe-TUD-1 in Friedel-Crafts benzylation of benzene. Catal. Today 100(3–4), 255–260 (2005)

    CAS  Article  Google Scholar 

  18. 18.

    Saputera, W.H., Mul, G., Hamdy, M.S.: Ti3+-containing titania: synthesis tactics and photocatalytic performance. Catal. Today 246, 60–66 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    Anand, R., Hamdy, M., Hanefeld, U., Maschmeyer, T.: Liquid-phase oxidation of cyclohexane over Co-TUD-1. Catal. Lett. 95(3–4), 113–117 (2004)

    CAS  Article  Google Scholar 

  20. 20.

    Hamdy, M.S., Mul, G.: Synthesis, characterization and catalytic performance of Mo-TUD-1 catalysts in epoxidation of cyclohexene. Catal. Sci. Tech. 2(9), 1894–1900 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    Hamdy, M.S.: Au-TUD-1: a new catalyst for aerobic oxidation of cyclohexene. Microp. Mesop. Mater. 220, 81–87 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    Al-Shehri, B.M., Shkir, M., Khder, A.E.R.S., Kaushik, A., Hamdy, M.S.: Noble metal nanoparticles incorporated siliceous TUD-1 mesoporous nano-catalyst for low-temperature oxidation of carbon monoxide. Manomater. 10, 1067 (2020)

    CAS  Google Scholar 

  23. 23.

    Hamdy, M.S., Eissa, M.A., Keshk, S.M.A.S.: New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol. Green Chem. 19(21), 5144–5151 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    Al-Shehri, B., Altass, H.M., Ashour, S.S., Shkir, M., Abd El Rahman, S.K., Hamdy, M.S.: Enhancement the photocatalytic performance of semiconductors through composite formation with Eu-TUD-1. Optik. 202, 163522 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    Sun, H., Han, J., Ding, Y., Li, W., Duan, J., Chen, P., et al.: One-pot synthesized mesoporous Ca/SBA-15 solid base for transesterification of sunflower oil with methanol. Appl. Catal. A Gen. 390(1), 26–34 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    Sing, K.S., Everett, D.H., Haul, R., Moscou, L., Pierotti, R.A., Rouquerol, J., et al.: International union of pure commission on colloid and surface chemistry including catalysis* reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603–619 (1985)

    CAS  Article  Google Scholar 

  27. 27.

    Adam, F., Chew, T.-S., Andas, J.: A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass. J. Sol-Gel Sci. Techn. 59(3), 580–583 (2011)

    CAS  Article  Google Scholar 

  28. 28.

    Shan, Z., Jansen, J.C., Marchese, L., Maschmeyer, T.: Synthesis, characterization and catalytic testing of a 3-D mesoporous titanosilica, Ti–TUD-1. Microp. Mesop. Mater. 48(1), 181–187 (2001)

    CAS  Article  Google Scholar 

  29. 29.

    Jin H. Synthesis of NaOH-impregnated Calcined Oyster Shell for Transesterification Reaction. (PhD Thesis) (2017)

  30. 30.

    Kumar, S., Kishore, B., Munichandraiah, N.: Electrochemical studies of non-aqueous Na–O2 cells employing Ag-RGO as the bifunctional catalyst. RSC Adv. 6(68), 63477–63479 (2016). https://doi.org/10.1039/C6RA13596J

    CAS  Article  Google Scholar 

  31. 31.

    Yadegari, H., Li, Y., Banis, M.N., Li, X., Wang, B., Sun, Q., et al.: On rechargeability and reaction kinetics of sodium–air batteries. Energy Environ. Sci. 7(11), 3747–3757 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    Hamdy, M.S., Mul, G., Wei, W., Anand, R., Hanefeld, U., Jansen, J.C., et al.: Fe, Co and Cu-incorporated TUD-1: synthesis, characterization and catalytic performance in N2O decomposition and cyclohexane oxidation. Catal. Today 110(3), 264–271 (2005)

    CAS  Article  Google Scholar 

  33. 33.

    Hamdy, M.S.: One-step synthesis of M-doped TiO2 nanoparticles in TUD-1 (M-TiO2-TUD-1, M=Cr or V) and their photocatalytic performance under visible light irradiation. J. Mol. Catal. A Chem. 393, 39–46 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    Benaissa, M., Alhanash, A.M., Eissa, M., Hamdy, M.S.: Solvent-free selective hydrogenation of 1,5-cyclooctadiene catalyzed by palladium incorporated TUD-1. Catal. Comm. 101, 62–65 (2017)

    CAS  Article  Google Scholar 

  35. 35.

    Mubarak, A.T., Alhanash, A.M., Benaissa, M., Hegazy, H.H., Hamdy, M.S.: In-situ activation of Pd-TUD-1 during the selective reduction of 1,5-cyclooctadiene. Microp. Mesop. Mater. 278, 225–231 (2019)

    CAS  Article  Google Scholar 

  36. 36.

    Song, H., Zhang, F., Jiang, N., Chen, M., Li, F., Yan, Z.: Synthesis of an Ni2P catalyst supported on Na-MCM-41 with highly activity for dibenzothiophene HDS under mild conditions. Res. Chem. Intermed. 44(9), 5285–5299 (2018)

    CAS  Article  Google Scholar 

  37. 37.

    Michalska, A., Daturi, M., Saussey, J., Nowak, I., Ziolek, M.: The role of MCM-41 composition in the creation of basicity by alkali metal impregnation. Microp. Meso. Mater. 90(1), 362–369 (2006)

    CAS  Article  Google Scholar 

  38. 38.

    Albayati, T.M., Doyle, A.M.: Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel. J. Nanop. Res. 17(2), 109 (2015)

    Article  CAS  Google Scholar 

  39. 39.

    Chen, W.-K., Tseng, H.-H., Wei, M.-C., Su, E.-C., Chiu, I.C.: Transesterification of canola oil as biodiesel over Na/Zr-SBA-15 catalysts: Effect of zirconium content. Intern. J. Hydrog. Energy. 39(34), 19555–19562 (2014)

    CAS  Article  Google Scholar 

  40. 40.

    Shen, Z.-L., Xu, X.-P., Ji, S.-J.: Brønsted base-catalyzed one-pot three-component biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one and mechanistic study. The J. Org. Chem. 75(4), 1162–1167 (2010)

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kamal Raj, M., Rao, H.S.P., Manjunatha, S.G., Sridharan, R., Nambiar, S., Keshwan, J., et al.: A mechanistic investigation of Biginelli reaction under base catalysis. Tetrahed. Lett. 52(28), 3605–3609 (2011)

    CAS  Article  Google Scholar 

  42. 42.

    Shen, Z.L., Xu, X.P., Ji, S.J.: Brønsted Base-Catalyzed One-Pot Three-Component Biginelli-Type Reaction: An Efficient Synthesis of 4,5,6-Triaryl-3,4-dihydropyrimidin-2(1H)-one and Mechanistic Study. J. Org. Chem. 75, 1162 (2010)

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Raj, M.K., Rao, H.S.P., Manjunatha, S.G., Sridharan, R., Nambiar, S., Keshwan, J., Rappai, J., Bhagat, S., Shwetha, B.S., Hegde, D., Santhosh, U.: A mechanistic investigation of Biginelli reaction under base catalysis. Tetrahed. Lett. 52, 3605 (2011)

    Article  CAS  Google Scholar 

  44. 44.

    Albayati, T.M., Aidan, M.D.: Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel. J. Nano Res. 17, 109 (2015)

    Article  CAS  Google Scholar 

  45. 45.

    Chen, W., Tseng, H., Wei, M., Su, E., Chiu, I.: Transesterification of canola oil as biodiesel over Na/Zr-SBA-15 catalysts: Effect of zirconium content. Intern. J. Hydrog. Energ. 39, 19555 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

B. M. Al-Shehri thanks Chemistry Department, College of Science, Umm Al-Qura University for personal fellowship. The authors also acknowledge the Deanship of Scientific Research at King Khalid University for funding this work through the research group program under Grant number R.G.P.1/172/41.

Author information

Affiliations

Authors

Contributions

Conceptualization analysis, synthesis, materials characterization was performed by BAS and MS; supervision and manuscript writing AK and MRS; manuscript editing and data analysis by MSH and MS. All authors are agreed published as proposed research.

Corresponding authors

Correspondence to Ajeet Kaushik or Mohamed S. Hamdy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Shehri, B.M., Shabaan, M.R., Shkir, M. et al. Single-step fabrication of Na-TUD-1 novel heterogeneous base nano-catalyst for Knoevenagel condensation reaction. J Nanostruct Chem (2020). https://doi.org/10.1007/s40097-020-00364-8

Download citation

Keywords

  • Na-TUD-1
  • Knoevenagel condensation
  • Microwave
  • Conventional heating
  • Base catalyst