Rapid photodecolorization of methyl orange and rhodamine B using zinc oxide nanoparticles mediated by pullulan at different calcination conditions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Water is one of the humanity’s major resources, but it is actually at risk due to growth and urbanization. Water reclamation and reuse was introduced as one of the solutions. However, the presence of organic pollutants, such as dyes, in the reclaim water can cause adverse effect to human. The dyes can be removed through photocatalysis process where semiconductor materials such as zinc oxide (ZnO) is used as the catalyst. In this research, several zinc oxide nanoparticles (ZnO NPs) were developed with pullulan as the capping agent through green synthesis. The impact of calcination conditions on the properties of synthesized ZnO NPs was explored. All the synthesized samples were subjected to photocatalytic degradation of two dyes, methyl orange (MO) and rhodamine B (RhB). The results indicated that with the increment of calcination temperature, the average particles size increased from 28.86 to 127.69 nm and the surface area reduced from 30.7996 to 12.3757 m2 g−1. As the calcination time changed, substantial impact was observed where, as calcination time increased to 2 h, the average particles size and the surface area significantly increased and reduced, respectively. The best photocatalytic degradation of MO and RhB was observed using ZnO NPs produced at 400 °C and 1 h calcination conditions. Overall, ZnO NPs have a good prospect to be applied for removal of dyes in wastewater.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    He, C., Huang, G., Liu, L., Li, Y., Zhang, X., Xu, X.: Multi-dimensional diagnosis model for the sustainable development of regions facing water scarcity problem: a case study for Guangdong. China. Sci. Total Environ. 734, 139394 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Tian, Y., Hu, H., Zhang, J.: Solution to water resource scarcity: water reclamation and reuse. Environ. Sci. Pollut. Res. Int. 24, 5095–5097 (2017)

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Ong, C.B., Ng, L.Y., Mohammad, A.W.: A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sust. Energ. Rev. 81, 536–551 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    Ma, X.Y., Li, Q., Wang, X.C., Wang, Y., Wang, D., Ngo, H.H.: Micropollutants removal and health risk reduction in a water reclamation and ecological reuse system. Water Res. 138, 272–281 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Nandhini, N.T., Rajeshkumar, S., Mythili, S.: The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal. Agric. Biotechnol. 19 (2019)

  6. 6.

    Bilal, M., Rasheed, T., Iqbal, H.M.N., Li, C., Wang, H., Hu, H., Wang, W., Zhang, X.: Photocatalytic degradation, toxicological assessment and degradation pathway of C.I. Reactive Blue 19 dye. Chem. Eng. Res. Des. 129, 384–390 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    Vanaamudan, A., Sadhu, M., Pamidimukkala, P.: Chitosan-Guar gum blend silver nanoparticle bionanocomposite with potential for catalytic degradation of dyes and catalytic reduction of nitrophenol. J. Mol. Liq. 271, 202–208 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    Isari, A.A., Payan, A., Fattahi, M., Jorfi, S., Kakavandi, B.: Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 462, 549–564 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    Belver, C., Bedia, J., Peñas-Garzón, M., Muelas-Ramos, V., Gómez-Avilés, A., Rodriguez, J.J.: Structured photocatalysts for the removal of emerging contaminants under visible or solar light. In: Sacco, O., Vaiano, V. (eds.) Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants. pp. 41–98. Elsevier, (2020)

  10. 10.

    Wang, S., Kuang, P., Cheng, B., Yu, J., Jiang, C.: ZnO hierarchical microsphere for enhanced photocatalytic activity. J. Alloys Compd. 741, 622–632 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    Anwer, H., Mahmood, A., Lee, J., Kim, K.-H., Park, J.-W., Yip, A.C.K.: Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. (2019).

  12. 12.

    Shidpour, R., Simchi, A., Ghanbari, F., Vossoughi, M.: Photo-degradation of organic dye by zinc oxide nanosystems with special defect structure: effect of the morphology and annealing temperature. Appl. Catal. A. 472, 198–204 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    He, L., Tong, Z., Wang, Z., Chen, M., Huang, N., Zhang, W.: Effects of calcination temperature and heating rate on the photocatalytic properties of ZnO prepared by pyrolysis. J. Colloid Interface Sci. 509, 448–456 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Azmina, M.S., Nor, R.M., Rafaie, H.A., Sani, S.F.A., Osman, Z.: Enhanced photocatalytic performance of silver decorated zinc oxide nanoparticles grown on silica microparticles. Silicon-Neth 11, 2845–2852 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    Baruah, A., Chaudhary, V., Malik, R., Tomer, V.K.: Nanotechnology based solutions for wastewater treatment. In: Nanotechnology in Water and Wastewater Treatment. pp. 337–368. (2019)

  16. 16.

    Padmalaya, G., Sreeja, B.S., Shoba, S., Rajavel, R., Radha, S., Arivanandan, M., Shrestha, S.: Synthesis of micro-dumbbell shaped rGO/ZnO composite rods and its application towards as electrochemical sensor for the simultaneous determination of ammonia and formaldehyde using hexamine and its structural analysis. J. Inorg. Organomet. Polym. Mater. 30, 943–954 (2019)

    Article  CAS  Google Scholar 

  17. 17.

    Ismail, A.M., Menazea, A.A., Kabary, H.A., El-Sherbiny, A.E., Samy, A.: The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol-Gel method. J. Mol. Struct. 1196, 332–337 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    Leila, D., Mar, L.-G., Fatima, B., Abddelyamine, N., Ali, B., Nacereddine, H.: Effect of polyethylene glycol and propyltrimethoxysilane on structural and optical properties of zinc oxide nanoparticles synthesized by sol–gel process. J. Theor. Appl. Phys. 12, 159–167 (2018)

    Article  Google Scholar 

  19. 19.

    Pandey, B.K., Shahi, A.K., Shah, J., Kotnala, R.K., Gopal, R.: Giant ferromagnetism in Li doped ZnO nanoparticles at room temperature. J. Alloys Compd. 823 (2020).

  20. 20.

    Thambidurai, S., Gowthaman, P., Venkatachalam, M., Suresh, S.: Natural sunlight assisted photocatalytic degradation of methylene blue by spherical zinc oxide nanoparticles prepared by facile chemical co-precipitation method. Optik 207 (2020).

  21. 21.

    Fawcett, D., Verduin, J.J., Shah, M., Sharma, S.B., Poinern, G.E.J.: A Review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J. Nanosci. 2017, 1–15 (2017)

    Article  Google Scholar 

  22. 22.

    Chauhan, A.K., Kataria, N., Garg, V.K.: Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation. Chemosphere 247, 125803 (2020)

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Chandra, H., Patel, D., Kumari, P., Jangwan, J.S., Yadav, S.: Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C. Mater. Biol. Appl. 102, 212–220 (2019)

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Prasad, A.R., Anagha, M., Shamsheera, K.O., Joseph, A.: Bio-fabricated ZnO nanoparticles: direct sunlight-driven selective photodegradation, antibacterial activity, and thermoluminescence-emission characteristics. New. J. Chem. 44, 8273–8279 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    Prasad, A.R., Garvasis, J., Oruvil, S.K., Joseph, A.: Bio-inspired green synthesis of zinc oxide nanoparticles using Abelmoschus esculentus mucilage and selective degradation of cationic dye pollutants. J. Phys. Chem. Solids 127, 265–274 (2019)

    CAS  Article  Google Scholar 

  26. 26.

    Prasad, A.R., Rugmini Ammal, P., Joseph, A.: Effective photocatalytic removal of different dye stuffs using green synthesized zinc oxide nanogranules. Mater. Res. Bull. 102, 116–121 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    Fouda, A., Hassan, S.E., Salem, S.S., Shaheen, T.I.: In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb. Pathog. 125, 252–261 (2018)

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Moghaddam, A.B., Moniri, M., Azizi, S., Rahim, R.A., Bin Ariff, A., Saad, W.Z., Namvar, F., Navaderi, M., Mohamad, R.: Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 22 (2017)

  29. 29.

    Dodero, A., Alloisio, M., Vicini, S., Castellano, M.: Preparation of composite alginate-based electrospun membranes loaded with ZnO nanoparticles. Carbohydr. Polym. 227, 115371 (2020)

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Abd Elkodous, M., El-Sayyad, G.S., Abdel Maksoud, M.I.A., Abdelrahman, I.Y., Mosallam, F.M., Gobara, M., El-Batal, A.I.: Fabrication of Ultra-Pure Anisotropic Zinc Oxide Nanoparticles via Simple and Cost-Effective Route: Implications for UTI and EAC Medications. Biol. Trace. Elem. Res. 196, 297–317 (2020)

  31. 31.

    Grigoras, A.G.: Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. Environ. Chem. Lett. 17, 1209–1223 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    Laksee, S., Puthong, S., Teerawatananond, T., Palaga, T., Muangsin, N.: Highly efficient and facile fabrication of monodispersed Au nanoparticles using pullulan and their application as anticancer drug carriers. Carbohydr. Polym. 173, 178–191 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Shah, A., Ashames, A.A., Buabeid, M.A., Murtaza, G.: Synthesis, in vitro characterization and antibacterial efficacy of moxifloxacin-loaded chitosan-pullulan-silver-nanocomposite films. J. Drug Deliv. Sci. Technol. 55 (2020).

  34. 34.

    Khorrami, M.B., Sadeghnia, H.R., Pasdar, A., Ghayour-Mobarhan, M., Riahi-Zanjani, B., Darroudi, M.: Role of Pullulan in preparation of ceria nanoparticles and investigation of their biological activities. J. Mol. Struct. 1157, 127–131 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    Mohamed Isa, E.D., Che Jusoh, N.W., Hazan, R., Shameli, K.: Pullulan mediated zinc oxide microparticles: Effect of synthesis temperature. IOP Conf. Ser., Mater. Sci. Eng. 808 (2020).

  36. 36.

    Iravani, S.: Plant gums for sustainable and eco-friendly synthesis of nanoparticles: recent advances. Inorg. Nano-Met. Chem. 50, 469–488 (2020)

    CAS  Article  Google Scholar 

  37. 37.

    Khorsand Zak, A., Abd Majid, W.H., Mahmoudian, M.R., Darroudi, M., Yousefi, R.: Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv. Powder. Technol. 24, 618–624 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    Sukri, S., Shameli, K., Wong, M.M.T., Teow, S.Y., Chew, J., Ismail, N.A.: Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J. Mol. Struct. 1189, 57–65 (2019)

    Article  CAS  Google Scholar 

  39. 39.

    Trinetta, V.: The application of edible and active pullulan coatings on foods. In: Reference Module in Food Science. Elsevier, (2017)

  40. 40.

    Saif, S., Tahir, A., Asim, T., Chen, Y., Khan, M., Adil, S.F.: Green synthesis of ZnO hierarchical microstructures by Cordia myxa and their antibacterial activity. Saudi J. Biol. Sci. 26, 1364–1371 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Kołodziejczak-Radzimska, A., Markiewicz, E., Jesionowski, T.: Structural characterisation of ZnO particles obtained by the emulsion precipitation method. J. Nanomater. 2012, 1–9 (2012)

    Article  CAS  Google Scholar 

  42. 42.

    Gupta, R., Malik, P., Das, N., Singh, M.: Antioxidant and physicochemical study of Psidium guajava prepared zinc oxide nanoparticles. J. Mol. Liq. 275, 749–767 (2019)

    CAS  Article  Google Scholar 

  43. 43.

    Taghavi Fardood, S., Ramazani, A., Moradi, S., Azimzadeh Asiabi, P.: Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. J. Mater. Sci. Mater. Electron. 28, 13596–13601 (2017)

    CAS  Article  Google Scholar 

  44. 44.

    Tian, J.-L., Zhang, H.-Y., Wang, G.-G., Wang, X.-Z., Sun, R., Jin, L., Han, J.-C.: Influence of film thickness and annealing temperature on the structural and optical properties of ZnO thin films on Si (100) substrates grown by atomic layer deposition. Superlattices Microstruct. 83, 719–729 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    Chaitra, U., Kekuda, D., Mohan Rao, K.: Effect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin films. Ceram. Int. 43, 7115–7122 (2017)

    CAS  Article  Google Scholar 

  46. 46.

    Goswami, M., Adhikary, N.C., Bhattacharjee, S.: Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method. Optik 158, 1006–1015 (2018)

    CAS  Article  Google Scholar 

  47. 47.

    Haghighatpanah, N., Mirzaee, H., Khodaiyan, F., Kennedy, J.F., Aghakhani, A., Hosseini, S.S., Jahanbin, K.: Optimization and characterization of pullulan produced by a newly identified strain of Aureobasidium pullulans. Int. J. Biol. Macromol. 152, 305–313 (2020)

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Muthuchamy, N., Atchudan, R., Edison, T.N.J.I., Perumal, S., Lee, Y.R.: High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet. J. Electroanal. Chem. 816, 195–204 (2018)

    CAS  Article  Google Scholar 

  49. 49.

    Atchudan, R., Edison, T.N.J.I., Perumal, S., Shanmugam, M., Lee, Y.R.: Direct solvothermal synthesis of zinc oxide nanoparticle decorated graphene oxide nanocomposite for efficient photodegradation of azo-dyes. J. Photochem. Photobiol. A: Chem. 337, 100–111 (2017)

    CAS  Article  Google Scholar 

  50. 50.

    Lanyi, F.J., Wenzke, N., Kaschta, J., Schubert, D.W.: A method to reveal bulk and surface crystallinity of Polypropylene by FTIR spectroscopy—suitable for fibers and nonwovens. Polym. Test. 71, 49–55 (2018)

    CAS  Article  Google Scholar 

  51. 51.

    Yang, C., Li, Q., Tang, L., Xin, K., Bai, A., Yu, Y.: Synthesis, photocatalytic activity, and photogenerated hydroxyl radicals of monodisperse colloidal ZnO nanospheres. Appl. Surf. Sci. 357, 1928–1938 (2015)

    CAS  Article  Google Scholar 

  52. 52.

    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87 (2015)

  53. 53.

    Lv, X., Zhang, L., Xing, F., Lin, H.: Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater. 225, 238–244 (2016)

    CAS  Article  Google Scholar 

  54. 54.

    Rahman, K.H., Kar, A.K.: Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2 p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation. J. Environ. Chem. Eng. 8 (2020)

  55. 55.

    Dong, C., Cai, H., Zhang, X., Cao, C.: Synthesis and characterization of monodisperse copper nanoparticles using gum acacia. Phys. E Low Dimens. Syst. Nanostruct. 57, 12–20 (2014)

    CAS  Article  Google Scholar 

  56. 56.

    Sultana, K.A., Islam, M.T., Silva, J.A., Turley, R.S., Hernandez-Viezcas, J.A., Gardea-Torresdey, J.L., Noveron, J.C.: Sustainable synthesis of zinc oxide nanoparticles for photocatalytic degradation of organic pollutant and generation of hydroxyl radical. J. Mol. Liq. 307 (2020)

  57. 57.

    Krishnan, B.R., Ramesh, M., Selvakumar, M., Karthick, S., Sasikumar, A., Geerthi, D.V., Senthilkumar, N.: A facile green approach of cone-like ZnO NSs synthesized via Jatropha Gossypifolia leaves extract for photocatalytic and biological activity. J. Inorg. Organomet. Polym. Mater., 11 (2020)

  58. 58.

    Muthuvel, A., Jothibas, M., Manoharan, C.: Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J. Environ. Chem. Eng. 8 (2020)

  59. 59.

    Golmohammadi, M., Honarmand, M., Ghanbari, S.: A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochim. Acta. Pt. A: Mol. Biomol. Spectrosc. 229, 117961 (2020)

    CAS  Article  Google Scholar 

  60. 60.

    Taha, K.K., Modwi, A., Elamin, M.R., Arasheed, R., Al-Fahad, A.J., Albutairi, I., Arasheed, H.a., Alfaify, M., Anojaidi, K., Algethami, F.K., Bagabas, A.: Impact of Hibiscus extract on the structural and activity of sonochemically fabricated ZnO nanoparticles. J. Photochem. Photobiol. A: Chem. 390 (2020)

  61. 61.

    Shah, A.P., Jain, S., Mokale, V.J., Shimpi, N.G.: High performance visible light photocatalysis of electrospun PAN/ZnO hybrid nanofibers. J. Ind. Eng. Chem. 77, 154–163 (2019)

    CAS  Article  Google Scholar 

  62. 62.

    Shi, L., Liang, L., Ma, J., Meng, Y., Zhong, S., Wang, F., Sun, J.: Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceram. Int. 40, 3495–3502 (2014)

    CAS  Article  Google Scholar 

  63. 63.

    Liu, Z., Liu, R., Yi, Y., Han, W., Kong, F., Wang, S.: Photocatalytic degradation of dyes over a xylan/PVA/TiO2 composite under visible light irradiation. Carbohydr. Polym. 223, 115081 (2019)

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Thirukumaran, P., Atchudan, R., Parveen, A.S., Kalaiarasan, K., Lee, Y.R., Kim, S.C.: Fabrication of ZnO nanoparticles adorned nitrogen-doped carbon balls and their application in photodegradation of organic dyes. Sci. Rep. 9, 19509 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Atchudan, R., Edison, T.N.J.I., Perumal, S., Karthik, N., Karthikeyan, D., Shanmugam, M., Lee, Y.R.: Concurrent synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@nitrogen-doped carbon sheets for photocatalytic degradation of methylene blue. J. Photochem. Photobiol. A: Chem. 350, 75–85 (2018)

    CAS  Article  Google Scholar 

Download references


The authors wish to acknowledge the funding provided by the Malaysian Ministry of Higher Education under the Tier 1 grant (Grant no. #20H33 and #20H55), Fundamental Research Grant Scheme (FRGS) (Grant No. 5F021 and Grant No. 5F031) and express gratitude to the Research Management Centre (RMC) of UTM and Malaysia-Japan International Institute of Technology (MJIIT) for all the facilities and support.

Author information



Corresponding author

Correspondence to Kamyar Shameli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 195 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isa, E.D.M., Shameli, K., Jusoh, N.W.C. et al. Rapid photodecolorization of methyl orange and rhodamine B using zinc oxide nanoparticles mediated by pullulan at different calcination conditions. J Nanostruct Chem (2020). https://doi.org/10.1007/s40097-020-00358-6

Download citation


  • Zinc oxide nanoparticles
  • Pullulan
  • Green synthesis
  • Photocatalytic activity