Skip to main content
Log in

The study of the applicability of ionizing radiation to increase the photocatalytic activity of TiO2 thin films

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The paper presents the results of studying the efficiency of using ionizing radiation to modify the surface morphology and structural properties of TiO2 thin films, and the effect of ion modification on the photocatalytic activity of Rhodamine B. decomposition. Structural and morphological changes in thin films were characterized by irradiation with doses of 1014–1016 ion/cm2 using scanning electron microscopy, atomic force microscopy, energy-dispersive analysis and X-ray diffraction. Modification by ion irradiation of thin films leads to a change in grains orientation, a decrease in their size, and an increase in the active surface area. Formation of grains preferred orientation at high radiation doses is caused both by grains rotation as a result of distorting and deformation factors caused by radiation, and by grains partial fragmentation. It was shown that in the case of modified samples of thin films, not only an increase in the rate decomposition reaction constant by 2–4.5 times compared with the initial samples, but also the degree of mineralization is observed. According to the data obtained, the maximum value of mineralization as a result of photocatalytic reactions for initial films was no more than 75–76%. While for irradiated samples, this value varies from 83 to 90% depending on the irradiation dose. For modified films, an increase in crack resistance and resistance to degradation to prolonged tests of photocatalytic activity is observed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Geng, J., Gu, F., Chang, J.: Fabrication of magnetic lignosulfonate using ultrasonic-assisted in situ synthesis for efficient removal of Cr (VI) and Rhodamine B from wastewater. J. Hazard. Mater. 375, 174–181 (2019)

    CAS  Google Scholar 

  2. Wang, J., Gao, M., Shen, T., Yu, M., Xiang, Y., Liu, J.: Insights into the efficient adsorption of rhodamine B on tunable organo-vermiculites. J. Hazard. Mater. 366, 501–511 (2019)

    CAS  Google Scholar 

  3. Roy, S., Majumdar, S., Sahoo, G.C., Bhowmick, S., Kundu, A.K., Mondal, P.: Removal of As (V), Cr (VI) and Cu (II) using novel amine functionalized composite nanofiltration membranes fabricated on ceramic tubular substrate. J. Hazard. Mater. 399, 122841 (2020)

    CAS  Google Scholar 

  4. Wang, Y., et al.: Synthesis of BiPO4 by crystallization and hydroxylation with boosted photocatalytic removal of organic pollutants in air and water. J. Hazard. Mater. 399, 122999 (2020)

    CAS  Google Scholar 

  5. Mohamed, R.M., Aazam, E.: Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chin. J. Catal. 34(6), 1267–1273 (2013)

    CAS  Google Scholar 

  6. Sayılkan, F., Asiltürk, M., Tatar, P., Kiraz, N., Arpac, E., Sayılkan, H.: Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights. Mater. Res. Bull. 43(1), 127–134 (2008)

    Google Scholar 

  7. Yang, J., Sun, X., Yang, W., Zhu, M., Shi, J.: The improvement of coralline-like ZnGa2O4 by cocatalysts for the photocatalytic degradation of rhodamine B. Catalysts 10(2), 221 (2020)

    CAS  Google Scholar 

  8. Waheed, A., Mansha, M., Kazi, I.W., Ullah, N.: Synthesis of a novel 3, 5-diacrylamidobenzoic acid based hyper-cross-linked resin for the efficient adsorption of Congo Red and Rhodamine B. J. Hazard. Mater. 369, 528–538 (2019)

    CAS  Google Scholar 

  9. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S.K., Arul Antony, S.: Sol–gel synthesis and characterization studies of NiMoO4 nanostructures for photocatalytic degradation of methylene blue dye. Nanosci. Nanotechnol. Lett. 8(5), 438–443 (2016)

    Google Scholar 

  10. Ying, Y., Song, T., Huang, H., Peng, X.: Nanoporous ZnO nanostructures for photocatalytic degradation of organic pollutants. Appl. Phys. A. 110(2), 351–359 (2013)

    CAS  Google Scholar 

  11. Safari-Amiri, M., Mortazavi-Derazkola, S., Salavati-Niasari, M., Ghoreishi, S.M.: Synthesis and characterization of Dy2O3 nanostructures: enhanced photocatalytic degradation of rhodamine B under UV irradiation. J. Mater. Sci. Mater. Electron. 28(9), 6467–6474 (2017)

    CAS  Google Scholar 

  12. Shanmuganathan, R., LewisOscar, F., Shanmugam, S., Thajuddin, N., Alharbi, S.A., Alharbi, N.S., Pugazhendhi, A.: Core/shell nanoparticles: synthesis, investigation of antimicrobial potential and photocatalytic degradation of Rhodamine B. J. Photochem. Photobiol. B. 202, 111729 (2020)

    CAS  Google Scholar 

  13. Jun, B.M., Elanchezhiyan, S.S., Yoon, Y., Wang, D., Kim, S., Prabhu, S.M., Park, C.M.: Accelerated photocatalytic degradation of rhodamine B over carbonate-rich lanthanum-substituted zinc spinel ferrite assembled reduced graphene oxide by ultraviolet (UV)-activated persulfate. Chem. Eng. J. 393, 124733 (2020)

    CAS  Google Scholar 

  14. Tahir, M.B., Nabi, G., Iqbal, T., Sagir, M., Rafique, M.: Role of MoSe2 on nanostructures WO3-CNT performance for photocatalytic hydrogen evolution. Ceram. Int. 44(6), 6686–6690 (2018)

    CAS  Google Scholar 

  15. Tahir, M.B., Nabi, G., Khalid, N.R., Khan, W.S.: Synthesis of nanostructured based WO 3 materials for photocatalytic applications. JIOPM 28(3), 777–782 (2018)

    CAS  Google Scholar 

  16. Wang, T., Liu, S., Mao, W., Bai, Y., Chiang, K., Shah, K., Paz-Ferreiro, J.: Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr (VI). J. Hazard. Mater. 389, 121827 (2020)

    CAS  Google Scholar 

  17. Ji, B., Zhang, J., Zhang, C., Li, N., Zhao, T., Chen, F., Wang, Z.: Vertically aligned ZnO@ ZnS nanorod chip with improved photocatalytic activity for antibiotics degradation. ACS Appl. Nano Mater. 1(2), 793–799 (2018)

    CAS  Google Scholar 

  18. Pourrahimi, A.M., Villa, K., Ying, Y., Sofer, Z., Pumera, M.: ZnO/ZnO2/Pt Janus micromotors propulsion mode changes with size and Interface structure: enhanced nitroaromatic explosives degradation under visible light. ACS Appl. Mater. Interfaces 10(49), 42688–42697 (2018)

    CAS  Google Scholar 

  19. Zhang, J., Li, L., Xiao, Z., Liu, D., Wang, S., Zhang, J., Zhang, W.: Hollow sphere TiO2–ZrO2 prepared by self-assembly with polystyrene colloidal template for both photocatalytic degradation and H2 evolution from water splitting. ACS Sustain. Chem. Eng. 4(4), 2037–2046 (2016)

    CAS  Google Scholar 

  20. Liao, J., Lin, S., Zhang, L., Pan, N., Cao, X., Li, J.: Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl. Mater. Interfaces 4(1), 171–177 (2012)

    CAS  Google Scholar 

  21. Maeda, K., Domen, K.: Surface nanostructures in photocatalysts for visible-light-driven water splitting. Photocatalysis 303, 95–119 (2011)

    CAS  Google Scholar 

  22. Osterloh, F.E.: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013)

    CAS  Google Scholar 

  23. Kale, M.J., Avanesian, T., Christopher, P.: Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4(1), 116–128 (2014)

    CAS  Google Scholar 

  24. Zhang, J., Zhang, Z., Zhu, W., Meng, X.: Boosted photocatalytic degradation of Rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite. Appl. Surf. Sci. 502, 144275 (2020)

    CAS  Google Scholar 

  25. Otitoju, T.A., Jiang, D., Ouyang, Y., Elamin, M.A.M., Li, S.: Photocatalytic degradation of Rhodamine B using CaCu3Ti4O12 embedded polyethersulfone hollow fiber membrane. J. Ind. Eng. Chem. 83, 145–152 (2020)

    CAS  Google Scholar 

  26. Peeters, H., Keulemans, M., Nuyts, G., Vanmeert, F., Li, C., Minjauw, M., Verbruggen, S.W.: Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings. Appl. Catal. B 267, 118654 (2020)

    CAS  Google Scholar 

  27. Brüger, A., Fafilek, G., Neumann-Spallart, M.: Treatment of cyanide: photoelectrocatalytic degradation using TiO2 thin film electrodes and influence of volatilization. Sol. Energy 205, 74–78 (2020)

    Google Scholar 

  28. Thangam, G.J.R., Devadasan, J.J., Grace, P.S.: Structural, morphological and photocatalytic activity of selenium doped TiO2 thin films. Stud. Ind. Pl. N. 40(71), 1000–1007 (2020)

    Google Scholar 

  29. Xiao, J., Cheng, J., Su, J., Huang, J., Liu, H.: Photocatalytic activity studies of la-doped TiO2 thin films prepared by magnetron sputtering. J. Mater. Eng. Perform. 29, 3152–3160 (2020)

    CAS  Google Scholar 

  30. Allé, P.H., Fanou, G.D., Robert, D., Adouby, K., Drogui, P.: Photocatalytic degradation of Rhodamine B dye with TiO2 immobilized on SiC foam using full factorial design. Appl. Water Sci. 10(9), 1–9 (2020)

    Google Scholar 

  31. Ton, N.Q.T., Le, T.N.T., Kim, S., Dao, V.A., Yi, J., Vu, T.H.T.: High-efficiency photo-generated charges of ZnO/TiO2 heterojunction thin films for photocatalytic and antibacterial performance. J. Nanosci. Nanotechnol. 20(4), 2214–2222 (2020)

    CAS  Google Scholar 

  32. Tiwari, D., Tiwari, A., Shukla, A., Kim, D.J., Yoon, Y.Y., Lee, S.M.: Facile synthesis and characterization of nanocomposite AuO (NPs)/titanium dioxide: photocatalytic degradation of Alizarin Yellow. J. Ind. Eng. Chem. 82, 153–163 (2020)

    Google Scholar 

  33. Yu, B., Meng, F., Khan, M.W., Qin, R., Liu, X.: Facile synthesis of AgNPs modified TiO2@ g-C3N4 heterojunction composites with enhanced photocatalytic activity under simulated sunlight. Mater. Res. Bull. 121, 110641 (2020)

    CAS  Google Scholar 

  34. Kim, T.W., Park, M., Kim, H.Y., Park, S.J.: Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants. J. Solid State Chem. 239, 91–98 (2016)

    CAS  Google Scholar 

  35. Qin, R., Meng, F., Khan, M.W., Yu, B., Li, H., Fan, Z., Gong, J.: Fabrication and enhanced photocatalytic property of TiO2–ZnO composite photocatalysts. Mater. Lett. 240, 84–87 (2019)

    CAS  Google Scholar 

  36. Fan, Z., Meng, F., Gong, J., Li, H., Ding, Z., Ding, B.: One-step hydrothermal synthesis of mesoporous Ce-doped anatase TiO2 nanoparticles with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 27(11), 11866–11872 (2016)

    CAS  Google Scholar 

  37. Fan, Z., Meng, F., Gong, J., Li, H., Hu, Y., Liu, D.: Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures. Mater. Lett. 175, 36–39 (2016)

    CAS  Google Scholar 

  38. Meng, F., Xiao, L., Sun, Zh: Thermo-induced hydrophilicity of nano-TiO2 thin films prepared by RF magnetron sputtering. J. Alloys Compd. 485(1-2), 848–852 (2009)

    CAS  Google Scholar 

  39. Fan, Z., Meng, F., Gong, J., Li, H., Li, A.: Growth mechanism and photocatalytic activity of chrysanthemum-like anatase TiO2 nanostructures. Ceram. Int. 42(5), 6282–6287 (2016)

    CAS  Google Scholar 

  40. Fan, Z., Meng, F., Zhang, M., Wu, Z., Sun, Z., Li, A.: Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Appl. Surf. Sci. 360, 298–305 (2016)

    CAS  Google Scholar 

  41. Park, H., Kim, H.I., Moon, G.H., Choi, W.: Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 9(2), 411–433 (2016)

    CAS  Google Scholar 

  42. Shayegan, Z., Lee, C.-S., Haghighat, F.: TiO2 photocatalyst for removal of volatile organic compounds in gas phase—a review. Chem. Eng. J. 334, 2408–2439 (2018)

    CAS  Google Scholar 

  43. Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., Bhatnagar, A.: Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137 (2016)

    CAS  Google Scholar 

  44. Riaz, S., Park, S.-J.: An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J. Ind. Eng. Chem. 84, 23–41 (2020)

    CAS  Google Scholar 

  45. Yang, L., Randel, E., Vajente, G., Ananyeva, A., Gustafson, E., Markosyan, A., Menoni, C.: Modifications of ion beam sputtered tantala thin films by secondary argon and oxygen bombardment. Appl. Opt. 59(5), A150–A154 (2020)

    CAS  Google Scholar 

  46. Sokolov, A.S., Jeon, Y.R., Ku, B., Choi, C.: Ar ion plasma surface modification on the heterostructured TaOx/InGaZnO thin films for flexible memristor synapse. J. Alloy Compd. 822, 153625 (2020)

    CAS  Google Scholar 

  47. Chauhan, V., Kumar, R.: Phase transformation and modifications in high-k ZrO2 nanocrystalline thin films by low energy Kr5+ ion beam irradiation. Mater. Chem. Phys. 240, 122127 (2020)

    CAS  Google Scholar 

  48. Shyam, R., Rathore, M.S., Vinod, A., Das, A., Dobbidi, P., Singh, F., Nelamarri, S.R.: Irradiation induced modification of structural and optical properties of potassium sodium niobate thin films. Appl. Phys. A. 126(1), 1 (2020)

    CAS  Google Scholar 

  49. Kozlovskiy, A., Shlimas, I., Dukenbayev, K., Zdorovets, M.: Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum 164, 224–232 (2019)

    CAS  Google Scholar 

  50. Alaei, M., Mahjoub, A.R., Rashidi, A.: Effect of WO3 nanoparticles on Congo red and rhodamine B photo degradation. IJCCE. 31(1), 23–29 (2012)

    CAS  Google Scholar 

  51. Martinez, D.S., Martínez-De La Cruz, A., Cuéllar, E.L.: Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: evaluation of photocatalytic activity under vis-irradiation. Solid State Sci. 12(1), 88–94 (2010)

    Google Scholar 

  52. Martinez, D.S., Martínez-De La Cruz, A., Cuéllar, E.L.: Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Appl. Catal. A Gen. 398(1–2), 179–186 (2011)

    Google Scholar 

  53. Meng, F., Lu, F., Sun, Z., Lü, J.: A mechanism for enhanced photocatalytic activity of nano-size silver particle modified titanium dioxide thin films. Sci. China Technol. Sci. 53(11), 3027–3032 (2010)

    CAS  Google Scholar 

  54. Yu, B., Meng, F., Khan, M.W., Qin, R., Liu, X.: Synthesis of hollow TiO2@ g-C3N4/Co3O4 core–shell microspheres for effective photooxidation degradation of tetracycline and MO. Ceram. Int. 46(9), 13133–13143 (2020)

    CAS  Google Scholar 

Download references

Funding

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (no. BR05235921).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AL, IK, and MZ; methodology, IG and AK; formal analysis, TZ, AK, DT, AT; investigation, AB, AK, DT, TZ, MV; resources, MZ; writing—original draft preparation, review and editing, MV, AK; visualization, AK; supervision, MZ, AK.

Corresponding author

Correspondence to A. Kozlovskiy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskiy, A., Zdorovets, M., Kenzhina, I. et al. The study of the applicability of ionizing radiation to increase the photocatalytic activity of TiO2 thin films. J Nanostruct Chem 10, 331–346 (2020). https://doi.org/10.1007/s40097-020-00353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00353-x

Keywords

Navigation