Skip to main content

Synthesis of silver and gold nanoparticles by Sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties



The present work reports on the antibacterial and antioxidant activity of gold and silver nanoparticles, synthesized by an extract of the brown macroalga Sargassum muticum (SM). These nanoparticles were synthesized and fully characterized by means of UV–Vis spectroscopy and electron microscopy. These techniques confirmed that spherical nanoparticles, with mean diameters of 10.4 ± 1.2 nm for Au@SM and 41.0 ± 5.7 nm for Ag@SM, were formed. To investigate the possible role of these biomolecules in this green synthetic process, Fourier-transformed infrared spectroscopy analysis was performed before and after the synthesis of nanoparticles. Furthermore, the carbohydrate composition was examined along with other variations observed after the synthesis of nanoparticles by size-exclusion chromatography. The study of the changes observed indicated that the polysaccharide fraction of the extract plays a role in the formation of the nanoparticles as well as in their stabilization. The in vitro antioxidant activity was analyzed by the determination of the reducing power, total content of phenolic compounds and the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity. Lastly, the antibacterial activity was tested against three types of bacteria with different cell wall composition. In particular, Ag@SM showed good inhibitory capacity on Gram+, especially on Staphylococcus aureus with a MIC of 3.38 µg/mL.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Vikesland, P., Garner, E., Gupta, S., Kang, S., Maile-Moskowitz, A., Zhu, N.: Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res. 52, 916–924 (2019)

    CAS  Google Scholar 

  2. 2.

    Gupta, A., Mumtaz, S., Li, C., Hussain, I., Rotello, V.M.: Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 48, 415–427 (2018)

    Google Scholar 

  3. 3.

    Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A.L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A.M., Durazzo, A., Santini, A., Garcia, M.L., Souto, E.B.: Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 10, 292–335 (2020)

    Google Scholar 

  4. 4.

    Roy, A., Bulut, O., Some, S., Mandal, A.K., Yilmaz, M.D.: Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9, 2673–2702 (2019)

    CAS  Google Scholar 

  5. 5.

    Liao, C., Li, Y., Tjong, S.C.: Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 20, 449 (2019)

    Google Scholar 

  6. 6.

    Tao, C.: Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges, and prospects. Lett. Appl. Microbiol. 67, 537–543 (2018)

    CAS  Google Scholar 

  7. 7.

    Nisar, P., Ali, N., Rahman, L., Ali, M., Shinwari, Z.K.: Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. JBIC J. Biol. Inorg. Chem. 24, 929–941 (2019)

    CAS  Google Scholar 

  8. 8.

    Gahlawat, G., Roy, A.: A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 9, 12944–12967 (2019)

    CAS  Google Scholar 

  9. 9.

    Khanna, P., Kaur, A., Goyal, D.: Algae-based metallic nanoparticles: synthesis, characterization and applications. J. Microbiol. Methods 163, 105656 (2019)

    CAS  Google Scholar 

  10. 10.

    Casas, M.P., Rodríguez-Hermida, V., Pérez-Larrán, P., Conde, E., Turco, L.M., Ribeiro, D., Fernandes, E., Domínguez, H.: In vitro bioactive properties of phlorotannins recovered from hydrothermal treatment of Sargassum muticum. Sep. Purif. Technol. 167, 117–126 (2016)

    CAS  Google Scholar 

  11. 11.

    Chollet, L., Saboural, P., Chauvierre, C., Villemin, J.N., Letourneur, D., Chaubet, F.: Fucoidans in nanomedicine. Mar. Drugs. 14, 1–24 (2016)

    Google Scholar 

  12. 12.

    Milledge, J.J., Nielsen, B.V., Bailey, D.: High-value products from macroalgae: the potential uses of the invasive brown seaweed Sargassum muticum. Rev. Environ. Sci. Biotechnol. 15, 67–88 (2016)

    CAS  Google Scholar 

  13. 13.

    Yende, S.R., Harle, U.N., Chaugule, B.B.: Therapeutic potential and health benefits of Sargassum species. Pharmacogn. Rev. 8, 1–7 (2014)

    Google Scholar 

  14. 14.

    Tanniou, A., Vandanjon, L., Incera, M., Serrano, L.E., Husa, V., Le Grand, J., Nicolas, J.L., Poupart, N., Kervarec, N., Engelen, A., Walsh, R., Guerard, F., Bourgougnon, N.: Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J. Appl. Phycol. 26, 1215–1230 (2014)

    CAS  Google Scholar 

  15. 15.

    Han, S.C., Kang, N.J., Yoon, W.J., Kim, S., Na, M.C., Koh, Y.S., Hyun, J.W., Lee, N.H., Ko, M.H., Kang, H.K., Yoo, E.S.: External application of apo-9'-fucoxanthinone, isolated from Sargassum muticum, suppresses inflammatory responses in a mouse model of atopic dermatitis. Toxicol. Res. 32, 109–114 (2016)

    Google Scholar 

  16. 16.

    Lee, J.A., Cho, Y.R., Hong, S.S., Ahn, E.K.: Anti-obesity activity of saringosterol isolated from Sargassum muticum (Yendo) fensholt extract in 3T3-L1 cells. Phytother. Res. 31, 1694–1701 (2017)

    CAS  Google Scholar 

  17. 17.

    Mahdavi, M., Namvar, F., Ahmad, M.B., Mohamad, R.: Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18, 5954–5964 (2013)

    Google Scholar 

  18. 18.

    Namvar, F., Rahman, H.S., Mohamad, R., Baharara, J., Mahdavi, M., Amini, E., Chartrand, M.S., Yeap, S.K.: Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomed. 9, 2479–2488 (2014)

    Google Scholar 

  19. 19.

    Sanaeimehr, Z., Javadi, I., Namvar, F.: Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 9, 3–19 (2018)

    Google Scholar 

  20. 20

    Namvar, F., Rahman, H.S., Mohamad, R., Rasedee, A., Yeap, S.K., Chartrand, M.S., Azizi, S., Tahir, P.M.: Apoptosis induction in human leukemia cell lines by gold nanoparticles synthesized using the green biosynthetic approach. J. Nanomater. 205, 642621 (2015)

    Google Scholar 

  21. 21.

    Namvar, F., Azizi, S., Ahmad, M.B., Shameli, K., Mohamad, R., Mahdavi, M., Tahir, P.M.: Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res. Chem. Intermed. 41, 5723–5730 (2015)

    CAS  Google Scholar 

  22. 22.

    Madhiyazhagan, P., Murugan, K., Kumar, A.N., Nataraj, T., Dinesh, D., Panneerselvam, C., Subramaniam, J., Kumar, P.M., Suresh, U., Roni, M., Nicoletti, M., Alarfaj, A.A., Higuchi, A., Munusamy, M.A., Benelli, G.: Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res. 114, 4305–4317 (2015)

    Google Scholar 

  23. 23.

    Moorthi, P.V., Balasubramanian, C., Mohan, S.: An improved insecticidal activity of silver nanoparticle synthesized by using Sargassum muticum. Appl. Biochem. Biotechnol. 175, 135–140 (2015)

    CAS  Google Scholar 

  24. 24.

    Azizi, S., Namvar, F., Mahdavi, M., Ahmad, M.B., Mohamad, R.: Biosynthesis of silver nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials. 6, 5942–5950 (2013)

    Google Scholar 

  25. 25.

    González-Ballesteros, N., Prado-López, S., Rodríguez-González, J.B., Lastra-Valdor, M., Rodríguez-Argüelles, M.C.: Green synthesis of gold nanoparticles using brown seaweed Cystoseira baccata: its activity in colon cancer cells. Colloids Surf. B Biointerfaces. 153, 190–198 (2017)

    Google Scholar 

  26. 26.

    González-Ballesteros, N., Rodríguez-Argüelles, M.C., Prado-López, S., Lastra, M., Grimaldi, M., Cavazza, A., Nasi, L., Salviati, G., Bigi, F.: Macroalgae to nanoparticles: study of Ulva lactuca role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. Mater. Sci. Eng. C Mater. Biol. Appl. 97, 498–509 (2019)

    Google Scholar 

  27. 27.

    González-Ballesteros, N., Diego-González, L., Lastra-Valdor, M., Rodríguez-Argüelles, M.C., Grimaldi, M., Cavazza, A., Bigi, F., Simón-Vázquez, R.: Immunostimulant and biocompatible gold and silver nanoparticles synthesized by the Ulva intestinalis L. aqueous extract. J. Mater. Chem. B. 7, 4677–4691 (2019)

    Google Scholar 

  28. 28.

    Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M.: Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966)

    CAS  Google Scholar 

  29. 29.

    CLSI: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard; CLSI document M07–A10. Clinical and Laboratory Standars Institute, Wayne (2015)

    Google Scholar 

  30. 30.

    CLSI: Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approved standard; CLSI document M24–A2. Clinical and Laboratory Standars Institute, Wayne (2011)

    Google Scholar 

  31. 31.

    González-Ballesteros, N., Rodríguez-González, J.B., Lastra-Valdor, M., Rodríguez-Argüelles, M.C.: New application of two Antarctic macroalgae Palmaria decipiens and Desmarestia menziesii in the synthesis of gold and silver nanoparticles. Polar. Sci. 15, 49–54 (2018)

    Google Scholar 

  32. 32

    Rico, J.M., Fernandez, C.: Ecology of Sargassum muticum on the North Coast of Spain. II. Physiological differences between Sargassum muticum and Cystoseira nodicaulis. Bot. Mar. 40, 405–410 (1997)

    Google Scholar 

  33. 33.

    Balboa, E.M., Conde, E., Moure, A., Falqué, E., Domínguez, H.: In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138, 1764–1785 (2013)

    CAS  Google Scholar 

  34. 34.

    Flórez-Fernández, N., López-García, M., González-Muñoz, M.J., López-Vilariño, J.M., Domínguez, H.: Ultrasound-assisted extraction of fucoidan from Sargassum muticum. J. Appl. Phycol. 29, 1553–1561 (2017)

    Google Scholar 

  35. 35.

    Wang, D., Markus, J., Wang, C., Kim, Y.J., Mathiyalagan, R., Aceituno-Castro, V., Ahn, S., Yang, D.C.: Green synthesis of gold and silver nanoparticles using aqueous extract of Cibotium barometz root. Artif. Cells Nanomed. Biotechnol. 45, 1548–1555 (2017)

    CAS  Google Scholar 

  36. 36.

    Singaravelu, G., Arockiamary, J.S., Ganesh, K.V., Govindaraju, K.: A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces. 57, 97–101 (2007)

    CAS  Google Scholar 

  37. 37.

    Stalin Dhas, T., Ganesh, K.V., Stanley, A.L., Karthick, V., Govindaraju, K.: Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 99, 97–101 (2012)

    CAS  Google Scholar 

  38. 38.

    Ramakrishna, M., Babu, D.R., Gengan, R.M., Chandra, S., Rao, G.N.: Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J. Nanostruc. Chem. 6, 1–13 (2016)

    CAS  Google Scholar 

  39. 39.

    Goubet, N., Tempra, I., Yang, J., Soavi, G., Polli, D., Cerullo, G., Pileni, M.P.: Size and nanocrystallinity controlled gold nanocrystals: synthesis, electronic and mechanical properties. Nanoscale. 7, 3237–3246 (2015)

    CAS  Google Scholar 

  40. 40.

    Balboa, E.M., Gallego-Fabrega, C., Moure, A., Dominguez, H.: Study of the seasonal variation on proximate composition of oven-dried Sargassum muticum biomass collected in Vigo Ria Spain. J. Appl. Phycol. 28, 1943–1953 (2016)

    CAS  Google Scholar 

  41. 41.

    Palanisamy, S., Rajasekar, P., Vijayaprasath, G., Ravi, G., Manikandan, R., Prabhu, N.M.: A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: an in vitro analysis. Mater. Lett. 189, 196–200 (2017)

    CAS  Google Scholar 

  42. 42.

    Moubayed, N.M.S., Al-Houri, H.J., Al-Khulaifi, M.M., Al-Farraj, D.A.: Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J. Biol. Sci. 24, 162–169 (2016)

    Google Scholar 

  43. 43.

    Rodrigues, D., Freitas, A.C., Pereira, L., Rocha-Santos, T.A.P., Vasconcelos, M.W., Roriz, M., Rodríguez-Alcalá, L.M., Gomes, A.M.P., Duarte, A.C.: Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 183, 197–207 (2015)

    CAS  Google Scholar 

  44. 44

    Malanovic, N., Lohner, K.: Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim. Biophys. Acta BBA Biomembr. 1858, 936–946 (2016)

    CAS  Google Scholar 

  45. 45

    Squeglia, F., Ruggiero, A., Berisio, R.: Chemistry of peptidoglycan in Mycobacterium tuberculosis life cycle: an off-the-wall balance of synthesis and degradation. Chem. Eur. J. 24, 2533–2546 (2018)

    CAS  Google Scholar 

  46. 46.

    Alderwick, L.J., Harrison, J., Lloyd, G.S., Birch, H.L.: The mycobacterial cell wall—peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect Med. 5, a021113 (2015)

    Google Scholar 

  47. 47.

    Khatoon, N., Alam, H., Khan, A., Raza, K., Sardar, M.: Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci. Rep. 9, 1–10 (2019)

    CAS  Google Scholar 

  48. 48.

    González-Ballesteros, N., Rodríguez-Argüelles, M.C.: Seaweeds: a promising bionanofactory for ecofriendly synthesis of gold and silver nanoparticles. In: Torres, M.D., Kraan, S., Dominguez, H. (eds.) Advances in green and sustainable chemistry. Sustainable seaweed technologies cultivation biorefinery and applications, pp. 507–541. Elsevier, Amsterdam (2020)

    Google Scholar 

  49. 49.

    Yousefzadi, M., Rahimi, Z., Ghafori, V.: The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen). J. Agardh. Mater. Lett. 137, 1–4 (2014)

    CAS  Google Scholar 

  50. 50.

    Pareek, V., Gupta, R., Panwar, J.: Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater. Sci. Eng., C 90, 739–749 (2018)

    CAS  Google Scholar 

  51. 51.

    Alwan, H.A., Karam, M.A., Hashim, H.O., Hussein, F.H.: Synthesis and antibacterial activities of silver nanoparticles. Asian J. Chem. 31, 56–60 (2019)

    CAS  Google Scholar 

  52. 52.

    Khan, T., Ullah, N., Khan, M.A., Mashwani, Z.R., Nadhman, A.: Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv. Colloid Interface Sci. 272, 102017–102027 (2019)

    CAS  Google Scholar 

  53. 53.

    Lakshminarayanan, R., Ye, E., Young, D.J., Li, Z., Loh, X.J.: Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthc. Mater. 7, 1–13 (2018)

    Google Scholar 

  54. 54.

    Montero, L., Sánchez-Camargo, A.P., García-Cañas, V., Tanniou, A., Stiger-Pouvreau, V., Russo, M., Rastrelli, L., Cifuentes, A., Herrero, M., Ibáñez, E.: Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J. Chromatogr. A. 1428, 115–125 (2016)

    CAS  Google Scholar 

  55. 55.

    Pinteus, S., Silva, J., Alves, C., Horta, A., Fino, N., Rodrigues, A.I., Mendes, S., Pedrosa, R.: Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 218, 591–599 (2017)

    CAS  Google Scholar 

  56. 56.

    Namvar, F., Mohamad, R., Baharara, J., Zafar-Balanejad, S.: Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). BioMed Res. Int. 2013, 604787 (2013)

    Google Scholar 

  57. 57.

    Milledge, J.J., Nielsen, B.V., Harvey, P.J.: The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum. J. Appl. Phycol. 31, 1–8 (2018)

    Google Scholar 

  58. 58.

    Muthukumar, H., Palanirajan, S.K., Shanmugam, M.K., Gummadi, S.N.: Plant extract mediated synthesis enhanced the functional properties of silver ferrite nanoparticles over chemical mediated synthesis. Biotechnol. Rep. 26, 1–10 (2020)

    Google Scholar 

  59. 59.

    Cyril, N., George, J.B., Joseph, L., Raghavamenon, A.C., Sylas, V.P.: Assessment of antioxidant, antibacterial and antiproliferative (lung cancer cell line A549) activities of green synthesized silver nanoparticles from Derris trifoliata. Toxicol. Res. 8, 297–308 (2019)

    CAS  Google Scholar 

Download references


This work was supported by the Xunta de Galicia (Ref.: ED431C 2017/46-GRC and ED431C 2018/54 -GRC).

Author information



Corresponding author

Correspondence to M. C. Rodríguez-Argüelles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Ballesteros, N., Rodríguez-Argüelles, M.C., Lastra-Valdor, M. et al. Synthesis of silver and gold nanoparticles by Sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties. J Nanostruct Chem 10, 317–330 (2020).

Download citation


  • Sargassum muticum
  • Gold nanoparticles
  • Silver nanoparticles
  • Antibacterial activity
  • Antioxidant activity