Skip to main content
Log in

Computational algorithm for financial mathematical model based on European option

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

This article has been updated

Abstract

In this manuscript, a computational approach based on the combination of finite difference with the operational matrix approach is constructed for the time-fractional Black–Scholes model (TFBSM) arising in the financial market. We have applied the L1-2 scheme to approximate the Caputo derivative and the operational matrix method (OMM) by using shifted Legendre polynomials (SLP) and shifted Chebyshev polynomials (SCP) to approximate the space derivatives. The proposed algorithm easily transforms the TFBSM into a system of algebraic equations, which can be solved easily to get the numerical solution. Furthermore, theoretical unconditional stability and convergence of the numerical scheme are established for \(\alpha \in (0,{\bar{\alpha }}]\) and the stability of the proposed algorithm is also verified numerically. Finally, the scheme is tested on five numerical problems, including the European double barrier call option and the European call and put option. It is observed that this computational approach gives almost the same accuracy with both the basis functions, but the CPU time taken by scheme with SLP basis is less than the SCP basis function. The effect of different parameters like volatility, interest rate, fractional order, etc., on the option pricing, is also investigated. A comparative study of the numerical results by the proposed algorithm with the schemes given in Zhang et al. (Comput Math Appl 71(9):1772–1783, 2016) and De Staelen and Hendy (Comput Math Applic 74(6):1166–1175, 2017), is also provided to show its effectiveness and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

  • 12 June 2022

    The original version of this article was revised to update the email id of the authors.

References

  1. An, X., Liu, F., Zheng, M., Anh, V.V., Turner, I.W.: A space-time spectral method for time-fractional Black-Scholes equation. Appl. Numer. Math. 165, 152–166 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodie, Z., Kane, A.: Investments. McGraw-Hill/Irwin, New York (2008)

    Google Scholar 

  4. Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Finance 2(58) (2003)

  5. Cartea, A.: Derivatives pricing with marked point processes using tick-by-tick data. Quant. Finance 13, 111–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cen, Z., Huang, J., Xu, A., Le, A.: Numerical approximation of a time-fractional Black–Scholes equation. Comput. Math. Appl. 75(8), 2874–2887 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Chen, W., Xu, X., Zhu, S.P.: Analytically pricing double barrier options based on a time-fractional Black–Scholes equation. Comput. Math. Appl. 69, 1407–1419 (2015)

    MathSciNet  MATH  Google Scholar 

  8. De Staelen, R.H., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional Black-Scholes model. Comput. Math. Appl. 74(6), 1166–1175 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ.: Int. J. 26(2), 448–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Del-Castillo-Negrete, D., Cartea, A.: Fractional diffusion models of option prices in markets with jumps. Physica A 374, 749–763 (2006)

    Google Scholar 

  12. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elbeleze, A.A., Kilicman, A., Taib, B.M.: Homotopy perturbation method for fractional Black-Scholes European option pricing equations using Sumudu transform. Math. Probl. Eng. 1(524852), 1–7 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Fadaei, Y., Khan, Z.A., Akgül, A.: A greedy algorithm for partition of unity collocation method in pricing American options. Math. Methods Appl. Sci. 42, 5595–5606 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its application. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golbabai, A., Nikan, O.: Numerical analysis of time fractional Black-Scholes European option pricing model arising in financial market. Comput. Appl. Math. 38(173), 1–24 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Joshi, V., Pachori, R.B., Vijesh, A.: Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 9, 1–5 (2014)

    Article  Google Scholar 

  18. Jumarie, G.: Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black–Scholes equations. Insurance Math. Econom. 42, 271–287 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jumarie, G.: Derivation and solutions of some fractional Black–Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Comput. Math. Appl. 59, 1142–1164 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol 204. Elsevier Science Limited (2006)

  21. Kumar, S., Kumar, D., Singh, J.: Numerical computation of fractional Black–Scholes equation arising in financial market. Egypt. J. Basic Appl. Sci. 1, 177–183 (2014)

    Google Scholar 

  22. Kumar, Y., Singh, V.K.: Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation. Math. Comput. Simul. 190, 531–569 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kumar, Y., Singh, S., Srivastava, N., Singh, A., Singh, V.K.: Wavelet approximation scheme for distributed order fractional differential equations. Comput. Math. Appl. 80(8), 1985–2017 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Liang, J.R., Wang, J., Zhang, W.J., Qui, W.Y., Ren, F.Y.: Option pricing of a bi-fractional Black-Merton-Scholes model with the Hurst exponent H in \(\left[\frac{1}{2},1\right]\). Appl. Math. Lett. 23, 859–863 (2010)

    Article  MathSciNet  Google Scholar 

  26. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Maurya, R.K., Devi, V., Srivastava, N., Singh, V.K.: An efficient and stable Lagrangian matrix approach to Abel integral and integro-differential equations. Appl. Math. Comput. 374(125005), 1–30 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin, Boston (2012)

    MATH  Google Scholar 

  30. Merton, R.D.: Theroy of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mirzaee, F., Samadyar, N.: Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection–diffusion equations. Engineering with Computers pp 1–14 (2019)

  32. Morgado, L., Rebelo, M.: Black–Scholes equation with distributed order in time. In :Progress in Industrial Mathematics at ECMI 2018. Springer, Amsterdam (2019)

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  34. Qi, H., Xu, M.: Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta. Mech. Sin. 23(5), 463–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Roul, P., Goura, V.P.: A compact finite difference scheme for fractional Black-Scholes option pricing model. Appl. Numer. Math. 166, 40–60 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  38. Singh, O.P., Singh, V.K., Pandey, R.K.: A stable numerical inversion of Abel’s integral equation using almost Bernstein operational matrix. J. Quant. Spectrosc. Radiat. Transfer 111, 245–252 (2010)

    Article  Google Scholar 

  39. Soleymani, F., Akgül, A.: Improved numerical solution of multi-asset option pricing problem: A localized RBF-FD approach. Chaos Solitons Fractals 119, 298–309 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Soleymani, F., Akgül, A.: European option valuation under the bates pide in finance: A numerical implementation of the gaussian scheme. Discrete Contin. Dyn. Syst.-S 13, 889–909 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Srivastava, N., Singh, A., Kumar, Y., Singh, V.K.: Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. Appl. Numer. Math. 161(8), 244–274 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Srivastava, V., Rai, K.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51(5–6), 616–624 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wyss, W.: The fractional Black–Scholes equation. Frac. Calc. Appl. Anal. Theory Appl. 3(1) (2000)

  44. Zhang, H., Liu, F., Turner, I., Yang, Q.: Numerical solution of the time fractional Black–Scholes model governing European options. Comput. Math. Appl. 71(9), 1772–1783 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

N. Srivastava acknowledges the financial support from the Ministry of Education, Govt. of India, under Senior Research Fellowship (SRF) scheme. A. Singh acknowledges the financial support from Council of Scientific & Industrial Research (CSIR), India, under Senior Research Fellow (SRF) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N., Singh, A. & Singh, V.K. Computational algorithm for financial mathematical model based on European option. Math Sci 17, 467–490 (2023). https://doi.org/10.1007/s40096-022-00474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-022-00474-0

Keywords

Navigation