Skip to main content
Log in

Numerical solution of the diffusion problem of distributed order based on the Sinc-collocation method

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

A numerical method for the diffusion problem with the fractional derivative of distributed order arising in modeling real life phenomena is investigated. The approximation is based on the Sinc-collocation method. We proposed the Sinc-collocation method in both spatial and temporal discretizations of the problem. The fractional derivatives in this article are of the Caputo type. Also, we proved the convergence of the introduced method and an error estimate for it. We have shown the efficiency of the introduced method with the help of several examples. The obtained numerical results confirm the presented convergence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Miller, K.S., Ross, B.: An Introduction to The Fractional Calculus and Fractional Differential Equations. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  2. Odibat, Z.M.: Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul. 79(7), 2013–2020 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Odibat, Z., Momani, S.: Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model. 32, 28–39 (2008)

    Article  MATH  Google Scholar 

  4. Maleknejad, K., Rashidinia, J., Eftekhari, T.: Numerical solutions of distributed order fractional differential equations in the time domain using the Muntz–Legendre wavelets approach. Numer. Methods Partial Differ. Equ. 37(1), 707–731 (2021)

    Article  Google Scholar 

  5. Maleknejad, K., Rashidinia, J., Eftekhari, T.: Existence, uniqueness, and numerical solutions for two-dimensional nonlinear fractional Volterra and Fredholm integral equations in a Banach space. Comput. Appl. Math. 39(4), 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Maleknejad, K., Rashidinia, J., Eftekhari, T.: Operational matrices based on hybrid functions for solving general nonlinear two-dimensional fractional integro-differential equations. Comput. Appl. Math. 39(2), 1–34 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Maleknejad, K., Rashidinia, J., Eftekhari, T.: Numerical solution of three-dimensional Volterra–Fredholm integral equations of the first and second kinds based on Bernstein’s approximation. Appl. Math. Comput. 339, 272–285 (2018)

    MathSciNet  MATH  Google Scholar 

  8. De La Sen, M., Hedayati, V., Atani, Y.G., Rezapour, S.: The existence and numerical solution for a k-dimensional system of multi-term fractional integro-differential equations. Nonlinear Anal. Model. 22(2), 188–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Solutions with Wright function for time fractional free convection flow of Casson fluid. Arab. J. Sci. Eng. 42, 2565–2572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kumar, P., Agrawal, O.P.: Numerical scheme for the solution of fractional differential equations of order greater than one. J. Comput. Nonlinear Dyn. 1, 178–185 (2006)

    Article  Google Scholar 

  11. Mainardi, F., Mura, A., Gorenflo, R., Stojanovic, M.: The two forms of fractional relaxation of distributed order. J. Vib. Control 13, 1249–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shivanian, E., Jafarabadi, A.: The numerical solution for the time-fractional inverse problem of diffusion equation. Eng. Anal. Bound. Elem. 91, 50–59 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Agarwalab, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Phys. A Stat. Mech. Appl. 500, 40–49 (2018)

    Article  MathSciNet  Google Scholar 

  14. Morgado, M.L., Rebelo, M., Ferras, L.L., Ford, N.J.: Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Appl. Numer. Math. 114, 108–123 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)

    Article  Google Scholar 

  16. Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Ford, N.J., Morgado, M.L.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64, 2973–2981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69(9), 926–948 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ford, N.J., Morgado, M.L., Rebelo, M.: An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Electron. Trans. Numer. 44, 289–305 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Yuttanan, B., Razzaghi, M.: Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Model. 70, 350–364 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eggert, N., Jarratt, M., Lund, J.: Sinc function computation of the eigenvalues of Sturm–Liouville problems. J. Comput. Appl. Math. 69, 209–229 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Mohsen, A., El-Gamel, M.: A Sinc-collocation method for the linear fredholm integro-differential equations. Z. Angew. Math. Phys. 58, 380–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stenger, F., Cook, T., Kirby, R.: Sinc solution of biharmonic problems. Can. Appl. Math. Q. 12, 371–414 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Lund, J., Bowers, K.L.: SINC METHODS for Quadrature and Differential Equations. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The first draft of the manuscript was written by “Sh. Taherkhani” and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to I. Najafi Khalilsaraye.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest or conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherkhani, S., Khalilsaraye, I.N. & Ghayebi, B. Numerical solution of the diffusion problem of distributed order based on the Sinc-collocation method. Math Sci 17, 133–144 (2023). https://doi.org/10.1007/s40096-021-00447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00447-9

Keywords

Mathematics Subject Classification

Navigation