Skip to main content
Log in

A Taylor–Chebyshev approximation technique to solve the 1D and 2D nonlinear Burgers equations

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper deals with proposing an approximate solution for the well-known Burgers equation as a canonical model of various fields of science and engineering. Our novel combined approximation algorithm is based on the linearized Taylor approach for the time discretization, while the spectral Chebyshev collocation method is utilized for the space variables. This implies that in each time step, the proposed combined approach reduces the one- and two-dimensional model problems into a system of linear equations, which consists of polynomial coefficients. The error analysis of the present approach in 1D and 2D is discussed. Through numerical simulations, the utility and efficiency of the combined scheme are examined and comparisons with exact solutions as well as existing available methods have been performed. The comparisons indicate that the combined approach is efficient, practical, and straightforward in implementation. The technique developed can be easily extended to other nonlinear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163–170 (1915)

    Article  Google Scholar 

  2. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  3. Zeidan, D., Chau, C., Lu, T., Zheng, W.: Mathematical studies of the solution of Burgers’ equations by Adomian decomposition Method. Math. Methods Appl. Sci. 43(5), 2171–2188 (2020)

  4. Mukundan, V., Awasthi, A., Mukundan, V.: Numerical techniques for unsteady nonlinear Burgers equation based on backward differentiation formulas. Nonlinear Eng. 7(3), 171–181 (2018)

    Article  MATH  Google Scholar 

  5. Okhovati, N., Izadi, M.: A predictor–corrector scheme for conservation equations with discontinuous coefficients. J. Math. Fund. Sci. 52(3), 322–338 (2020)

    Article  Google Scholar 

  6. Izadi, M.: Two-stages explicit schemes based numerical approximations of convection–diffusion equations. Int. J. Comput. Sci. Math. in press (2021)

  7. Saithambi, A.: Numerical solution of the Burgers’ equation by automatic differentiation. Appl. Math. Comput. 219(9), 2700–2708 (2010)

  8. Izadi, M.: Streamline diffusion method for treating coupling equations of hyperbolic scalar conservation laws. Math. Comput. Model. 45, 201–214 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Izadi, M.: A posteriori error estimates for the coupling equations of scalar conservation laws. BIT Numer. Math. 49(4), 697–720 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shao, L., Fenaga, X., He, Y.: The local discontinuous Galerkin finite element method for Burger’s equation. Math. Comput. Model. 54, 2943–2954 (2011)

  11. Izadi, M.: Applications of the Newton–Raphson method in a SDFEM for inviscid Burgers equation. Comput. Methods Differ. Equ. 8(4), 708–732 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Okhovati, N., Izadi, M.: Numerical coupling of two scalar conservation laws by a RKDG method. J. Korean Soc. Ind. Appl. Math. 23(3), 211–236 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Özis, T., Esen, A., Kutluay, S.: Numerical solution of Burger’s equation by quadratic B-spline finite element. Appl. Math. Comput. 165, 237–249 (2005)

  14. Fu, F., Li, J., Lin, J., Guan, Y., Gao, F., Zhang, C., Chen, L.: Moving least squares particle hydrodynamics method for Burgers’ equation. Appl. Math. Comput. 356, 362–378 (2019)

  15. Li, J., Hon, Y.C., Chen, C.S.: Numerical comparisons of two meshless methods using radial basis functions. Eng. Anal. Bound. Elem. 26(3), 205–225 (2002)

    Article  MATH  Google Scholar 

  16. Shivanian, E., Aslefallah, M.: Stability and convergence of spectral radial point interpolation method locally applied on two-dimensional pseudo-parabolic equation. Numer. Methods Partial Differ. Equ. 33(3), 724–741 (2017)

    Article  MATH  Google Scholar 

  17. Aslefallah, M., Abbasbandy, S., Shivanian, E.: Meshless singular boundary method for two-dimensional pseudo-parabolic equation: analysis of stability and convergence. J. Appl. Math. Comput. 63, 585–606 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aslefallah, M., Rostamy, D.: Application of the singular boundary method to the two-dimensional telegraph equation on arbitrary domains. J. Eng. Math. 118(1), 1–14 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hajishafieiha, J., Abbasbandy, S.: A new method based on polynomials equipped with a parameter to solve two parabolic inverse problems with a nonlocal boundary condition. Inverse Probl. Sci. Eng. 28(5), 739–53 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zaeri, S., Saeedi, H., Izadi, M.: Fractional integration operator for numerical solution of the integro-partial time fractional diffusion heat equation with weakly singular kernel. Asian Eur. J. Math. 10(4), 1750071 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aslefallaha, M., Shivanian, E.: Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions. Eur. Phys. J. Plus 130(3), 47 (2015)

    Article  Google Scholar 

  22. Dhawan, S., Kapoor, S., Kumar, S., Rawat, S.: Contemporary review of techniques for the solution of nonlinear Burgers equation. J. Comput. Sci. 3, 405–411 (2012)

    Article  Google Scholar 

  23. Bonkile, M.P., Awasthi, A., Lakshmi, C., Mukundan, V., Aswin, V.S.: A systematic literature review of Burgers’ equation with recent advances. Pramana J. Phys. 90(6), 1–21 (2018)

  24. Öztürk, Y., Gülsub, M.: An operational matrix method for solving Lane–Emden equations arising in astrophysics. Math. Method Appl. Sci. 37(15), 2227–2235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yüksel, G., Yüzbaşi, Ş, Sezer, M.: A Chebyshev method for a class of high-order linear Fredholm integro-differential equations. J. Adv. Res. Appl. Math. 4, 49–67 (2012)

    Article  MathSciNet  Google Scholar 

  26. Baleanu, D., Shiri, B., Srivastava, H.M., Al Qurashi, M.: A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag–Leffler kernel. Adv. Differ. Equ. 2018(1), 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Izadi, M., Afshar, M.: Solving the Basset equation via Chebyshev collocation and LDG methods. J. Math. Model. 9(1), 61–79 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Sinan, D., Sezer, M.: Rational Chebyshev collocation method for solving nonlinear heat transfer equations. Int. Commun. Heat Mass Trans. 114, Article ID 104595 (2020)

  29. Izadi, M.: Numerical approximation of Hunter–Saxton equation by an efficient accurate approach on long time domains. U.P.B. Sci. Bull. Ser. A 83(1), 291–300 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Izadi, M.: A combined approximation method for nonlinear foam drainage equation. Sci. Iran. in press (2021)

  31. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2002)

    Book  MATH  Google Scholar 

  32. Izadi, M., Srivastava, H.M.: An efficient approximation technique applied to a non-linear Lane–Emden pantograph delay differential model. Appl. Math. Comput. 401, Article ID 126123 (2021)

  33. Xu, M., Wang, R.H., Zhang, J.H., Fang, Q.: A novel numerical scheme for solving Burgers’ equation. Appl. Math. Comput. 217, 4473–4482 (2011)

  34. Inan, B., Bahadir, A.R.: Numerical solution of the one-dimensional Burgers’ equation: implicit and fully implicit exponential finite difference methods. Pramana J. Phys. 81(4), 547–556 (2013)

  35. Mukundan, V., Awasthi, A.: A higher order numerical implicit method for non-linear Burgers’ equation. Differ. Equ. Dyn. Syst. 25(2), 169–186 (2017)

  36. Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput. Phys. Commun. 183(11), 2413–2423 (2012)

  37. Wood, W.L.: An exact solution for Burger’s equation. Commun. Numer. Methods Eng. 22(7), 797–798 (2006)

  38. Mittal, R.C., Jain, R.K.: Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218, 7839–7855 (2012)

  39. Jiwari, R.: A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput. Phys. Commun. 188, 59–67 (2015)

  40. Jiwari, R., Mittal, R.C., Sharma, K.K.: A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation. Appl. Math. Comput. 219, 6680–6691 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Izadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, M., Yüzbaşı, Ş. & Baleanu, D. A Taylor–Chebyshev approximation technique to solve the 1D and 2D nonlinear Burgers equations. Math Sci 16, 459–471 (2022). https://doi.org/10.1007/s40096-021-00433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00433-1

Keywords

Navigation