Skip to main content
Log in

An improved radial basis functions method for the high-order Volterra–Fredholm integro-differential equations

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is aimed at rectifying the numerical solution of linear Volterra–Fredholm integro-differential equations with the method of radial basis functions (RBFs). In this method, the spectral convergence rate can be acquired by infinitely smooth radial kernels such as Gaussian RBF (GA-RBF). These kernels are made by a free shape parameter, and the highest accuracy can often be achieved when this parameter is small, but herein the coefficient matrix of interpolation is ill-conditioned. Alternative bases can be used to improve the stability of method. One of them is based on the eigenfunction expansion for GA-RBFs which is utilized in this study. The Legendre–Gauss–Lobatto integration rule is applied to estimate the integral parts. Moreover, the error analysis is discussed. The results of numerical experiments are presented to demonstrate stable solutions with high accuracy compared to the standard GA-RBFs, the analytical solutions, and the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, vol. 55. SIAM (1964)

  2. Avazzadeh, Z., Heydari, M.H., Cattani, C.: Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels. Eur. Phys. J. Plus 134(7), 368 (2019)

    Article  Google Scholar 

  3. Azarboni, H.R., Keyanpour, M., Yaghouti, M.: Leave-Two-Out Cross Validation to optimal shape parameter in radial basis functions. Eng. Anal. Bound. Elements 100, 204–210 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biazar, J., Asadi, M.A.: Galerkin RBF for integro-differential equations. British J. Math. Comput. Sci. 11(2), 1–9 (2015)

    Article  Google Scholar 

  5. Carlson, R.E., Foley, T.A.: The parameter \({R}^2\) in multiquadric interpolation. Comput. Math. Appl. 21(9), 29–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavoretto, R., Fasshauer, G.E., McCourt, M.: An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels. Numer. Algorithms 68(2), 393–422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., He, M., Zeng, T.: A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation II: Efficient algorithm for the discrete linear system. J. Visual Commun. Image Represent. 58, 112–118 (2019)

    Article  Google Scholar 

  8. Dehghan, M., Shokri, A.: A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer. Algorithms 52(3), 461 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elnagar, G.N., Kazemi, M.A.: Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems. J. Comput. Appl. Math. 88(2), 363–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elnagar, G.N., Razzaghi, M.: A collocation-type method for linear quadratic optimal control problems. Opt. Control Appl. Methods 18(3), 227–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erfanian, M., Mansoori, A.: Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet. Math. Comput. Simul. 165, 223–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fakhr Kazemi, B., Jafari, H.: Error estimate of the MQ-RBF collocation method for fractional differential equations with Caputo-Fabrizio derivative. Math. Sci. 11(4), 297–305 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  14. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Franke, R.: A critical comparison of some methods for interpolation of scattered data. Tech. rep, Naval Postgraduate School Monterey (1979)

    Book  Google Scholar 

  19. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Gallas, B., Barrett, H.H.: Modeling all orders of scatter in nuclear medicine. In: 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No. 98CH36255), vol. 3, pp. 1964–1968. IEEE (1998)

  21. Golbabai, A., Seifollahi, S.: Radial basis function networks in the numerical solution of linear integro-differential equations. Appl. Math. Comput. 188(1), 427–432 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Griebel, M., Rieger, C., Zwicknagl, B.: Multiscale approximation and reproducing kernel Hilbert space methods. SIAM J. Numer. Anal. 53(2), 852–873 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grigoriev, Y.N., Kovalev, V.F., Meleshko, S.V., Ibragimov, N.H.: Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  24. Hamoud, A., Ghadle, K.: Homotopy analysis method for the first order fuzzy Volterra-Fredholm integro-differential equations. Ind. J. Electr. Eng. Comput. Sci. 11(3), 857–867 (2018)

    Google Scholar 

  25. Hamoud, A.A., Ghadle, K.P.: The combined Modified Laplace with Adomian decomposition method for Solving the nonlinear Volterra-Fredholm Integro Differential Equations. J. Korean Soc. Ind. Appl. Math. 21(1), 17–28 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Article  Google Scholar 

  27. Heydari, M.H., Laeli Dastjerdi, H., Nili Ahmadabadi, M.: An efficient method for the numerical solution of a class of nonlinear fractional fredholm integro-differential equations. Int. J. Nonlinear Sci. Numer. Simul. 19(2), 165–173 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Heydari, M.H., Hosseininia, M.: A new variable-order fractional derivative with non-singular Mittag-Leffler kernel: application to variable-order fractional version of the 2D Richard equation. Eng. Comput. 1–12 (2020)

  29. Hendi, F., Al-Qarni, M.: The variational Adomian decomposition method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equation. J. King Saud Univ. Sci. 31(1), 110–113 (2019)

    Article  Google Scholar 

  30. Hosseininia, M., Heydari, M.H., Avazzadeh, Z., Maalek Ghaini, F.M.: A hybrid method based on the orthogonal Bernoulli polynomials and radial basis functions for variable order fractional reaction-advection-diffusion equation. Eng. Anal. Bound. Elements 127, 18–28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. İşler Acar, N., Daşcıoğlu, A.: A projection method for linear Fredholm-Volterra integro-differential equations. J. Taibah Univ. Sci. 13(1), 644–650 (2019)

    Article  Google Scholar 

  32. Kansa, E.J.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Khattak, A.J., Tirmizi, S., et al.: Application of meshfree collocation method to a class of nonlinear partial differential equations. Eng. Anal. Bound. Elements 33(5), 661–667 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Merad, A., Martín-Vaquero, J.: A Galerkin method for two-dimensional hyperbolic integro-differential equation with purely integral conditions. Appl. Math. Comput. 291, 386–394 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Mercer, J.: Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London. Ser. A, Containing Pap. Math. Phys. Charact. 209(441–458), 415–446 (1909)

  37. Mirrahimi, S.: Integro-differential models from ecology and evolutionary biology. Ph.D. thesis, Université Paul Sabatier (Toulouse 3) (2019)

  38. Mirzaee, F., Samadyar, N.: Using radial basis functions to solve two dimensional linear stochastic integral equations on non-rectangular domains. Eng. Anal. Bound. Elements 92, 180–195 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mohamed, M.S., Gepreel, K.A., Alharthi, M.R., Alotabi, R.A.: Homotopy analysis transform method for integro-differential equations. General Math. Notes 32(1), 32 (2016)

    Google Scholar 

  40. Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236(4), 575–588 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rashidinia, J., Fasshauer, G.E., Khasi, M.: A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems. Comput. Math. Appl. 72(1), 178–193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ray, S.S., Behera, S.: Two-dimensional wavelets operational method for solving Volterra weakly singular partial integro-differential equations. J. Comput. Appl. Math. 366, 112411 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2–3), 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, J., Tang, T.: High order numerical methods and algorithms. Chinese Science Press, Abstract and Applied Analysis (2005)

  45. Uddin, M., Ullah, N., Shah, S.I.A.: Rbf Based Localized Method for Solving Nonlinear Partial Integro-Differential Equations. Comput. Model. Eng. Sci. 123(3), 955–970 (2020)

    Google Scholar 

  46. Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  48. Wendland, H.: Scattered data approximation (2005)

  49. Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13(1), 13–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yüzbaşı, Ş, Şahın, N., Sezer, M.: Bessel polynomial solutions of high-order linear Volterra integro-differential equations. Comput. Math. Appl. 62(4), 1940–1956 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhao, J., Corless, R.M.: Compact finite difference method for integro-differential equations. Appl. Math. Comput. 177(1), 271–288 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Zheng, X., Qiu, W., Chen, H.: Three semi-implicit compact finite difference schemes for the nonlinear partial integro-differential equation arising from viscoelasticity. Int. J. Model. Simul. 41(3), 234–242 (2020)

    Article  Google Scholar 

  53. Zong-Min, W.: Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs. Chin. J. Eng. Math. 2 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Yaghouti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshadmoghadam, F., Deilami Azodi, H. & Yaghouti, M.R. An improved radial basis functions method for the high-order Volterra–Fredholm integro-differential equations. Math Sci 16, 445–458 (2022). https://doi.org/10.1007/s40096-021-00432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00432-2

Keywords

Mathematics Subject Classification

Navigation