Skip to main content
Log in

Fourth-order cubic B-spline collocation method for hyperbolic telegraph equation

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this article, a new method based on collocation of cubic B splines to find the numerical solution of one dimensional second-order hyperbolic partial differential equation subject to appropriate initial and boundary conditions has been proposed. The method is found to be high order accurate with compact support. Unconditional stability analysis of the proposed method has also been investigated. To justify the accuracy and efficacy of the proposed method, some numerical experiments are performed. The results obtained from the experiments are compared with the exact solution and the existing methods in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rashidinia, J., Jokar, M.: Numerical solution of nonlinear Klein–Gordon equation using polynomial wavelets, chapter in book Springer. In: Anatassiou, G.A., Duman, O. (Eds.) Intelligent Mathematics 2: Applied Mathematics And Approximation Theory (2016)

  2. Mohanty, R.K.: New high accuracy super stable alternating direction implicit methods for two and three dimensional hyperbolic damped wave equations. Results Phys. 4, 156–163 (2014)

    Article  Google Scholar 

  3. Gao, F., Chi, C.: Unconditionally stable difference schemes for a one-space dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Mohanty, R.K.: An unconditionally stable difference scheme for the one space dimensional linear hyperbolic equation. Appl. Math. Lett. 17(1), 101–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mohanty, R.K., Gopal, V.: High accuracy cubic spline finite difference approximation for the solution of one dimensional non-linear wave equations. Appl. Math. Comput. 218(8), 4234–4244 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Mohanty, R.K.: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients. Appl. Math. Comput. 165(1), 229–236 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Liu, L.B., Liu, H.W.: Compact difference schemes for solving telegraphic equations with Neumann boundary conditions. Appl. Math. Comput. 219(19), 10112–10121 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Mohanty, R.K., Singh, S.: High order variable mesh approximation for the solution of 1D-non linear hyperbolic equation. Int. J. Non-Linear Sci. 4(2), 220–227 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Lin, J., He, Y., Reutskiy, S.Y., Lu, J.J.: An effective semi analytical method for solving telegraph equation with variable coefficients. Eur. J. Plus 133, 290 (2018)

    Article  Google Scholar 

  10. Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Part. Differ. Equ. 24(4), 1080–1093 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rashidinia, J., Ghasemi, M., Jallian, R.: Numerical solution of the nonlinear Klein–Gordon equation. J. Comput. Appl. Math. 233(8), 1866–1878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Lakestani, M.: The use of Chebyshev cardinal functions for solution of the second order one dimensional telegraph equation. Numer. Methods Part. Differ. Equ. 25(4), 931–938 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Ghesmati, A.: Solution of the second order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method. Eng. Anal. Bound. Elem. 34(1), 51–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lakestani, M., Saray, B.N.S.: Numerical solution of telegraph equation using interpolating scaling functions. Comput. Math. Appl. 60(7), 1964–1972 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rashidinia, J., Jokar, M.: Application of polynomial scaling functions for numerical solution of telegraph equation. Appl. Anal. 95(1), 105–123 (2011). https://doi.org/10.1080/00036811.2014.998654

    Article  MathSciNet  MATH  Google Scholar 

  16. Rashidinia, J., Mohammaadi, R.: Tension spline solution of nonlinear Sine–Gordon equation. Numer. Algorithm 56, 129–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rashidinia, J., Mohammadi, R.: Tension spline approach for the numerical solution of nonlinear-Klein–Gordon equation. Comput. Phys. Commun. 181, 78–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rashidinia, J., Zadvan, H.: Non-polynomial spline method for the solution of the two-dimensional wave equations with a nonlinear source term. Numer. Algorithms (2016). https://doi.org/10.10007/S11075-016-0149-0

    Article  MATH  Google Scholar 

  19. Mohammadizadeh, S., Rashidinia, J., Ezzati, R., Khumalo, M.: \(C^3\)-spline for solution of second order fractional integro-differential equations. Alex. Eng. J. 59(5), 3635–3641 (2020)

    Article  Google Scholar 

  20. Aghamohamadi, M., Rashidinia, J., Ezzati, R.: Tension spline method for solution of non-linear Fisher equation. Appl. Math. Comput. 249, 399–407 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Bialecki, B., Fernandes, R.I.: An orthogonal spline collocation alternating direction implicit method for second-order hyperbolic problems. IMA J. Numer. Anal. 23, 693–718 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dosti, M., Nazemi, A.: Quartic B-spline collocation method for solving one-dimensional hyperbolic telegraph equation. J. Inf. Comput. Sci. 7(2), 083–090 (2012)

    Google Scholar 

  23. Singh, S., Singh, S., Arora, R.: Numerical solution of second order one-dimensional hyperbolic equation by exponential B-spline collocation method. Numer. Anal. Appl. 7, 164–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiwari, R., Pandit, S., Mittal, R.C.: A differential quadrature algorithm for the numerical solution of the second order one dimensional hyperbolic telegraph equation. Int. J. Nonlinear Sci. 13(2), 259–266 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Mittal, R.C., Bhatia, R.: Numerical solution of second order one-dimensional hyperbolic telegraph equation by cubic B-spline collocation method. Appl. Math. Comput. 220, 496–506 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Rashidinia, J., Jamalzadeh, S., Esfahani, F.: Numerical solution of one-dimensional telegraph equation using cubic B-spline collocation method. J. Interp. Approx. Sci. Comput. 7, 1–8 (2014)

    MathSciNet  Google Scholar 

  27. Sharifi, S., Rashidinia, J.: Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method. Appl. Math. Comput. 281, 28–38 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Archer, D.: An \(O(h^4)\) cubic spline collocation method for quasilinear parabolic equations. SIAM J. Numer. Anal. 14(4), 620–637 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Houstis, E.N., Vavalis, E.A., Rice, J.R.: Convergence of \(O(h^4)\)cubic spline collocation methods for elliptic partial differential equations. SIAM J. Numer. Anal. 25(1), 54–74 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Singh, S., Singh, S.: High order convergent modified nodal bi-cubic spline collocation method for elliptic partial differential equation. Numer. Methods Part. Differ. Equ. 6, 66 (2020). https://doi.org/10.1002/num.22463

    Article  MathSciNet  Google Scholar 

  31. de Boor, C.: Practical Guide to Splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  32. Hall, C.A.: On error bounds for spline interpolation. J. Approx. Theory 1, 209–218 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lucas, T.R.: Error bounds for interpolating cubic splines under various end conditions. SIAM J. Numer. Anal. 11(3), 569–584 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dosti, M., Nazemi, A.: Solving one-dimensional hyperbolic telegraph equation using cubic B-spline quasi-interpolation. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 5(4), 674–679 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suruchi Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, S. & Aggarwal, A. Fourth-order cubic B-spline collocation method for hyperbolic telegraph equation. Math Sci 16, 389–400 (2022). https://doi.org/10.1007/s40096-021-00428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00428-y

Keywords

Navigation