Skip to main content
Log in

Nonlinear dynamics of the Burgers’ equation and numerical experiments

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

A Correction to this article was published on 12 June 2021

This article has been updated

Abstract

In this study, we have modified quintic B-spline base function to use for numerical solution of the Burgers’ equation. For this purpose, the numerical algorithm differential quadrature method and Crank–Nicolson scheme are used for space and time discretization, respectively. To deal with nonlinear terms, they are linearized by using Rubin–Graves technique. To observe the accuracy of the present modification, ten different and important test problems are solved successfully. The present results are compared with earlier single methods and mixed methods to see the efficiency of the present algorithm. All comparisons display that the present approach developed the numerical results according to earlier ones. Numerical simulations are plotted at selected time steps to observe the physical behaviour of the waves in 2D and 3D. The rate of convergence related to space is calculated for different examples and reported with error norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Tuan, N.H., Aghdam, Y.E., Jafari, H., Mesgarani, H.: A novel numerical manner for two-dimensional space fractional diffusion equation arising in transport phenomena. Numer. Methods Partial Differ. Eq. 37, 1397–1406 (2021). https://doi.org/10.1002/num.22586

    Article  MathSciNet  Google Scholar 

  2. Safdari, H., Mesgarani, H., Javidi, M., Aghdam, Y.E.: Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme. Comput. Appl. Math. 39, 62 (2020). https://doi.org/10.1007/s40314-020-1078-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Mesgarani, H., Rashidinia, J., Aghdam, Y.E., Nikan, O.: Numerical treatment of the space fractional advection-dispersion model arising in groundwater hydrology. Comput. Appl. Math. 40, 22 (2021). https://doi.org/10.1007/s40314-020-01410-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Safdari, H., Aghdam, Y.E., Gomez-Aguilar, J.F.: Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space-time fractional advection-diffusion equation. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01092-x

    Article  Google Scholar 

  5. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948). https://doi.org/10.1016/S0065-2156(08)70100-5

    Article  MathSciNet  Google Scholar 

  6. Singh, A.I.: Burgers equation: A study using method of lines. J. Inf. Optim. Sci. 37(4), 641–652 (2016). https://doi.org/10.1080/02522667.2016.1184454

    Article  MathSciNet  Google Scholar 

  7. Wood, W.L.: An exact solution for Burger’s equation. Commun. Numer. Meth. Engng. 22, 797–798 (2006). https://doi.org/10.1002/cnm.850

    Article  MathSciNet  MATH  Google Scholar 

  8. Wazwaz, A.-M.: Kinks and travelling wave solutions for Burgers-like equations. Appl. Math. Lett. 38, 174–179 (2014). https://doi.org/10.1016/j.aml.2014.08.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Ramadan, M.A., El-Danaf, T.S., Abd Alaal, F.E.I.: A numerical solution of the Burgers’ equation using septic B-splines. Chaos, Solitons Fractal. 26, 795–804 (2005). https://doi.org/10.1016/j.chaos.2005.01.054

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu, C.-G., Wang, R.-H.: Numerical solution of Burgers’ equation by cubic B-spline quasi-interpolation. Appl. Math. Comput. 208, 260–272 (2009). https://doi.org/10.1016/j.amc.2008.11.045

    Article  MathSciNet  MATH  Google Scholar 

  11. Dogan, A.: A Galerkin finite element approach to Burgers equation. Appl. Math. Comput. 157, 331–346 (2004). https://doi.org/10.1016/j.amc.2003.08.037

    Article  MathSciNet  MATH  Google Scholar 

  12. Dağ, I., Irk, D., Şahin, A.: B-spline collocation methods for numerical solutions of the Burgers’ equation. Math. Probl. Eng. 2005(5), 521–538 (2005). https://doi.org/10.1155/MPE.2005.521

    Article  MathSciNet  MATH  Google Scholar 

  13. Raslan, K.R.: A collocation solution for burgers equation using quadratic B-spline finite elements. Int. J. Comput. Math. 80(7), 931–938 (2003). https://doi.org/10.1080/0020716031000079554

    Article  MathSciNet  MATH  Google Scholar 

  14. Ashpazzadeh, E., Han, B., Lakestani, M.: Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation. J. Comput. Appl. Math. 317, 510–534 (2017). https://doi.org/10.1016/j.cam.2016.11.045

    Article  MathSciNet  MATH  Google Scholar 

  15. Xie, S.-S., Heo, S., Kim, S., Woo, G., Yi, S.: Numerical solution of one-dimensional Burgers’ equation using reproducing kernel function. J. Comput. Appl. Math. 214, 417–434 (2008). https://doi.org/10.1016/j.cam.2007.03.010

    Article  MathSciNet  MATH  Google Scholar 

  16. Kutluay, S., Esen, A., Dağ, I.: Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method. J. Comput. Appl. Math. 167, 21–33 (2004). https://doi.org/10.1016/j.cam.2003.09.043

    Article  MathSciNet  MATH  Google Scholar 

  17. Cecchi, M.M., Nociforo, R., Grego, P.P.: Space-time finite elements numerical solutions of Burgers problems. Matematiche (Catania) 51(1), 43–57 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Mittal, R.C., Jain, R.K.: Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218, 7839–7855 (2012). https://doi.org/10.1016/j.amc.2012.01.05910.1007/s40096-021-00410-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Mittal, R.C., Singhal, P.: Numerical solution of Burgers’ equation. Commun. Numer. Methods Eng. 9, 397–406 (1993)

    Article  MathSciNet  Google Scholar 

  20. Rao, C.H.S., Satyanarayana, E.: Solutions of Burgers Equation. Int. J. Nonlinear Sci. 9(3), 290–295 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Wu, Z.: Dynamical knot and shape parameter setting for simulating shock wave by using multi-quadric quasi-interpolation. Eng. Anal. Boundary Elem. 29, 354–358 (2005). https://doi.org/10.1016/j.enganabound.2004.06.004

    Article  MATH  Google Scholar 

  22. Wu, Z.: Dynamically knots setting in meshless method for solving time dependent propagations equation. Comput. Methods Appl. Mech. Engrg. 193, 1221–1229 (2004). https://doi.org/10.1016/j.cma.2003.12.015

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, R., Wu, Z.: Solving partial differential equation by using multiquadric quasi-interpolation. Appl. Math. Comput. 186, 1502–1510 (2007). https://doi.org/10.1016/j.amc.2006.07.160

    Article  MathSciNet  MATH  Google Scholar 

  24. Seydaoğlu, M.: An accurate approximation algorithm for Burgers’ equation in the presence of small viscosity. J. Comput. Appl. Math. 344, 473–481 (2018). https://doi.org/10.1016/j.cam.2018.05.063

    Article  MathSciNet  MATH  Google Scholar 

  25. Ali, A.H.A., Gardner, G.A., Gardner, L.R.T.: A collocation solution for Burgers’ equation using cubic B-spline finite elements. Comput. Methods Appl. Mech. Eng. 100, 325–337 (1992)

    Article  MathSciNet  Google Scholar 

  26. Kutluay, S., Esen, A.: A linearized numerical scheme for Burgers-like equations. Appl. Math. Comput. 156, 295–305 (2004). https://doi.org/10.1016/j.amc.2003.07.011

    Article  MathSciNet  MATH  Google Scholar 

  27. Korkmaz, A., Dağ, I.: Shock wave simulations using Sinc Differential Quadrature Method. Int. J. Comput. Aided Eng. Softw. 28(6), 654–674 (2011). https://doi.org/10.1108/02644401111154619

    Article  MATH  Google Scholar 

  28. Dağ, I., Saka, B., Boz, A.: B-spline Galerkin methods for numerical solutions of the Burgers equation. Appl. Math. Comput. 166, 506–522 (2005). https://doi.org/10.1016/j.amc.2004.06.078

    Article  MathSciNet  MATH  Google Scholar 

  29. Saka, B., Dağ, I.: Quartic B-spline collocation method to the numerical solutions of the Burgers’ equation. Chaos, Solitons Fractals 32, 1125–1137 (2007). https://doi.org/10.1016/j.chaos.2005.11.037

    Article  MathSciNet  MATH  Google Scholar 

  30. Dağ, I., Irk, D., Saka, B.: A numerical solution of the Burgers’ equation using cubic B-splines. Appl. Math. Comput. 163, 199–211 (2005). https://doi.org/10.1016/j.amc.2004.01.028

    Article  MathSciNet  MATH  Google Scholar 

  31. Özis, T., Esen, A., Kutluay, S.: Numerical solution of Burgers equation by quadratic B-spline finite elements. Appl. Math. Comput. 165, 237–249 (2005). https://doi.org/10.1016/j.amc.2004.04.101

    Article  MathSciNet  MATH  Google Scholar 

  32. Kutluay, S., Bahadır, A.R., Özdeş, A.: Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods. J. Comput. Appl. Math. 103, 251–261 (1999)

    Article  MathSciNet  Google Scholar 

  33. Saka, B., Dağ, I.: A numerical study of the Burgers’ equation. J. Franklin Inst. 345, 328–348 (2008). https://doi.org/10.1016/j.jfranklin.2007.10.004

    Article  MathSciNet  MATH  Google Scholar 

  34. Dağ, I., Hepson, Ö.E., Kaçmaz, Ö.: The Trigonometric Cubic B-spline Algorithm for Burgers’ Equation. Int. J. Nonlinear Sci. 24(2), 120–128 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput. Phys. Commun. 183, 2413–2423 (2012). https://doi.org/10.1016/j.cpc.2012.06.009

    Article  MathSciNet  MATH  Google Scholar 

  36. Jiwari, R.: A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput. Phys. Commun. 188, 59–67 (2015). https://doi.org/10.1016/j.cpc.2014.11.004

    Article  MathSciNet  MATH  Google Scholar 

  37. Jiwari, R., Kumar, S., Mittal, R.C.: Meshfree algorithms based on radial basis functions for numerical simulation and to capture shocks behavior of Burgers’ type problems. Eng. Comput. 36(4), 1142–1168 (2019). https://doi.org/10.1108/EC-04-2018-0189

    Article  Google Scholar 

  38. Tamsir, M., Srivastava, V.K., Jiwari, R.: An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation. Appl. Math. Comput. 290, 111–124 (2016). https://doi.org/10.1016/j.amc.2016.05.048

    Article  MathSciNet  MATH  Google Scholar 

  39. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: A technique for the rapid solution of nonlinear differential equations. J. Comput. Phys. 10(1), 40–52 (1972). https://doi.org/10.1016/0021-9991(72)90089-7

    Article  MathSciNet  MATH  Google Scholar 

  40. Bellman, R., Kashef, B., Lee, E.S., Vasudevan, R.: Differential Quadrature and Splines. Comput. Math. Appl. 1(3–4), 371–376 (1975). https://doi.org/10.1016/0898-1221(75)90038-3

    Article  MATH  Google Scholar 

  41. Başhan, A.: A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method. Appl. Math. Comput. 360, 42–57 (2019). https://doi.org/10.1016/j.amc.2019.04.073

    Article  MathSciNet  MATH  Google Scholar 

  42. Başhan, A.: A mixed method approach to Schrödinger equation: Finite difference method and quartic B-spline based differential quadrature method. Int. J. Optim. Control: Theories Appl. 9(2), 223–235 (2019)

    MathSciNet  Google Scholar 

  43. Başhan, A.: An efficient approximation to numerical solutions for the Kawahara equation via modified cubic B-spline differential quadrature method. Mediterr. J. Math. 16, 14 (2019). https://doi.org/10.1007/s00009-018-1291-9

    Article  MathSciNet  MATH  Google Scholar 

  44. Uçar, Y., Yağmurlu, N.M., Başhan, A.: Numerical solutions and stability analysis of modified Burgers equation via modified cubic B-spline differential quadrature methods. Sigma J. Eng. Nat. Sci. 37(1), 129–142 (2019)

    Google Scholar 

  45. Yağmurlu, N.M., Uçar, Y., Başhan, A.: Numerical approximation of the combined KdV-mKdV equation via the quintic B-spline differential quadrature method. Adıyaman Univ. J. Sci. 9(2), 386–403 (2019)

    Article  Google Scholar 

  46. Shu, C.: Differential Quadrature and its application in engineering. Springer-Verlag, London Ltd (2000)

    Book  Google Scholar 

  47. Prenter, P.M.: Splines and Variational Methods. Wiley, New York NY USA (1975)

    MATH  Google Scholar 

  48. Rubin, S.G., Graves, R.A.: A cubic spline approximation for problems in fluid mechanics National aeronautics and space administration. Technical Report, Washington (1975)

    Google Scholar 

  49. El-Danaf, T.S.: Efficient and accurate numerical methods for the Burgers' and related partial differential equations. Ph.D. thesis, Menoufia University (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Başhan.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başhan, A. Nonlinear dynamics of the Burgers’ equation and numerical experiments. Math Sci 16, 183–205 (2022). https://doi.org/10.1007/s40096-021-00410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00410-8

Keywords

AMS classification

Navigation