Skip to main content
Log in

Pell–Lucas series approach for a class of Fredholm-type delay integro-differential equations with variable delays

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this study, a Pell–Lucas matrix-collocation method is used to solve a class of Fredholm-type delay integro-differential equations with variable delays under initial conditions. The method involves the basic matrix structures gained from the expansions of the functions at collocation points. Therefore, it performs direct and immediate computation. To test its advantage on the applications, some numerical examples are evaluated. These examples show that the method enables highly accurate solutions and approximations. Besides, the accuracy of the solutions and the validity of the method are checked via the residual error analysis and the upper bound error, respectively. Finally, the numerical results, such as errors and computation time, are compared in the tables and figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wazwaz, A.M.: Applications of Integral Equations: Linear and Nonlinear Integral Equations, vol. 639. Higher Education Press, Beijing (2011)

    Book  Google Scholar 

  2. Gümgüm, S., Baykuş, S.N., Kürkçü, K.Ö., Sezer, M.: A numerical technique based on Lucas polynomials together with standard and Chebyshev–Lobatto collocation points for solving functional integro-differential equations involving variable delays. Sakarya Univ. J. Sci. 22(6), 1659–1668 (2018). https://doi.org/10.19113/sdufenbed.546847

    Article  Google Scholar 

  3. Dönmez, D.D., Çinardali, T., Kükçü, Ö.K., Sezer, M.: The Legendre matrix-collocation approach for some nonlinear differential equations arising in physics and mechanics. Eur. J. Sci. Technol. (2019). https://doi.org/10.31590/ejosat.507708

    Article  Google Scholar 

  4. Sahin, M., Sezer, M.: Pell–Lucas collocation method for solving high-order functional differential equations with hybrid delays. Celal Bayar Univ. J. Sci. 14, 141–149 (2018). https://doi.org/10.18466/cbayarfbe.307282

    Article  Google Scholar 

  5. Baykus, N., Sezer, M.: Hybrid Taylor–Lucas collocation method for numerical solution of high-order, pantograph type delay differential equations with variables delays. Appl. Math. Inf. Sci. 11(6), 1795–1801 (2017). https://doi.org/10.18576/amis/110627

    Article  MathSciNet  Google Scholar 

  6. Erdem, K., Yalçinbas, S., Sezer, M.: A Bernoulli polynomial approach with residual correction for solving mixed linear Fredholm integro-differential-difference equations. Differ. Equ. Appl. 19(10), 1619–1631 (2013). https://doi.org/10.1080/10236198.2013.768619

    Article  MathSciNet  MATH  Google Scholar 

  7. Oguz, C., Sezer, M.: Chelyshkov collocation method for a class of mixed functional integro-differential equations. Appl. Math. Comput. 259, 943–954 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Yalçinbas, S., Sezer, M., Sorkun, H.H.: Legendre polynomial solutions of high-order linear Fredholm integro-differential equations. Appl. Math. Comput. 210(2), 334–349 (2009). https://doi.org/10.1016/j.amc.2008.12.090

    Article  MathSciNet  MATH  Google Scholar 

  9. Makroglou, A.: A block-by-block method for the numerical solution of Volterra delay integro-differential equations. Computing (1983). https://doi.org/10.1007/BF02253295

    Article  MathSciNet  MATH  Google Scholar 

  10. Abbas, S., Mehdi, D.: Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. Comput. Math. Appl. 59, 2996–3004 (2010). https://doi.org/10.1016/j.camwa.2010.02.018

    Article  MathSciNet  MATH  Google Scholar 

  11. Idrees, B.M., Bracken, P.: Solutions of differential equations in a Bernstein polynomial basis. Comput. Appl. Math. 205(1), 272–280 (2007). https://doi.org/10.1016/j.cam.2006.05.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Kazeem, I., Jafar, B., Babatunde, M.Y.: Shifted Chebyshev approach for the solution of delay Fredholm and Volterra integro-differential equations via perturbed Galerkin method. Iran. J. Optim. 2(11), 149–159 (2019)

    Google Scholar 

  13. Biazar, J., Ghanbari, B.: The homotopy perturbation method for solving neutral functional-differential equations with proportional delays. J. King Saud Univ. Sci. 24, 33–37 (2012). https://doi.org/10.1016/j.jksus.2010.07.026

    Article  Google Scholar 

  14. Chen, X., Wang, L.: The variational iteration method for solving a neutral functional-differential equation with proportional delays. Comput. Math. Appl. 59(8), 2696–2702 (2010). https://doi.org/10.1016/j.camwa.2010.01.037

    Article  MathSciNet  MATH  Google Scholar 

  15. Behiry, S.H.: Solution of nonlinear Fredholm integro-differential equations using a hybrid of block pulse functions and normalized Bernstein polynomials. Comput. Appl. Math. 260, 258–265 (2014). https://doi.org/10.1016/j.cam.2013.09.036

    Article  MathSciNet  MATH  Google Scholar 

  16. Hasan, P.A.M., Sulaiman, N.A.: Numerical treatment of mixed Volterra–Fredholm integral equations using trigonometric functions and Laguerre polynomials. ZANCO J. Pure Appl. Sci. 30, 97–106 (2018). https://doi.org/10.21271/ZJPAS.30.6.9

    Article  Google Scholar 

  17. Filiz, A.: Fourth-order robust numerical method for integro-differential equations. Fuzzy Appl. Math. 1(1), 28–33 (2013)

    Google Scholar 

  18. Ghoreishi, F., Hadizadeh, M.: Numerical computation of the tau approximation for the Volterra–Hammerstein integral equations. Numer. Algorithms 52, 541–559 (2009). https://doi.org/10.1007/s11075-009-9297-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Yalçinbas, S.: Taylor polynomial solution of nonlinear Volterra–Fredholm integral equations. Appl. Math. Comput. 127, 195–206 (2002). https://doi.org/10.1016/S0096-3003(00)00165-X

    Article  MathSciNet  MATH  Google Scholar 

  20. Hassan, T.I., Sulaiman, N.A., Shaharuddin, S.: Using Aitken method to solve Volterra–Fredholm integral equations of the second kind with Homotopy perturbation method. ZANCO J. Pure Appl. Sci. 29(4), 257–264 (2017). https://doi.org/10.21271/ZJPAS.29.s4.29

    Article  Google Scholar 

  21. Horadam, A.F., Mahon, J.M.: Pell and Pell–Lucas polynomials. Fibonacci Q. 23(1), 7–20 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Faheem, M., Raza, A., Khan, A.: Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations. Math. Comput. Simul. 180, 72–92 (2021)

    Article  MathSciNet  Google Scholar 

  23. Raza, A., Khan, A.: Haar wavelet series solution for solving neutral delay differential equations. J. King Saud Univ. Sci. 31, 1070–1076 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for their constructive and valuable comments, which led to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Dönmez Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dönmez Demir, D., Lukonde, A.P., Kürkçü, Ö.K. et al. Pell–Lucas series approach for a class of Fredholm-type delay integro-differential equations with variable delays. Math Sci 15, 55–64 (2021). https://doi.org/10.1007/s40096-020-00370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-020-00370-5

Keywords

Mathematics Subject Classification

Navigation