Laguerre polynomial solutions of linear fractional integro-differential equations

Abstract

In this paper, the numerical solutions of the linear fractional Fredholm–Volterra integro-differential equations have been investigated. For this purpose, Laguerre polynomials have been used to develop an approximation method. Precisely, using the suitable collocation points, a system of linear algebraic equations arises which is resulted by the transformation of the integro-differential equation. The fractional derivative is considered in the conformable sense, and the conformable fractional derivative of the Laguerre polynomials is obtained in terms of Laguerre polynomials. Additionally, for the first time in the literature, the exact matrix formula of the conformable derivatives of the Laguerre polynomials is established. Furthermore, the results of the proposed method have been given applying the method to some various examples.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yüzbaşı, Ş.: A numerical approximation for Volterra’s population growth model with fractional order. Appl. Math. Model. 37, 3216–3227 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Sweilam, N.H., Khader, M.M.: A Chebyshev pseudo-spectral method for solving fractional-order integro-differential equations. ANZIAM J. 51, 464–475 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Saaedi, H., Mohseni Moghadam, M.: Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun. Nonlinear Sci. Numer. Simulat. 16, 1216–1226 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Wang, Y., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 1, 27 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Maleknejad, K., Sahlan, M. N., Ostadi, A.: Numerical solution of fractional integro-differential equation by using cubic B-spline wavelets. In Proceedings of the World Congress on Engineering 2013 Vol I, London, UK, 3–5 July 2013

  6. 6.

    Awawdeh, F., Rawashdeh, E.A., Jaradat, H.M.: Analytic solution of fractional integro-differential equations. Ann. Univ. Craiova Math. Comput. Sci. Ser. 38(1), 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos, Solitons Fractals 40, 521–529 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Sayevand, K., Fardi, M., Moradi, E., Hemati Boroujeni, F.: Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order. Alexandria Eng. J. 52, 807–812 (2013)

    Article  Google Scholar 

  9. 9.

    Nawaz, Y.: Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Comput. Math Appl. 61, 2330–2341 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Saadatmandi, A., Dehghan, M.: A Legendre collocation method for fractional integro-differential equations. J. Vib. Control 17(13), 2050–2058 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Yang, Y., Chen, Y., Huang, Y.: Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations. Acta Math. Sci. Ser. B 34(3), 673–690 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38, 1434–1448 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Saleh, M.H., Amer, S.M., Mohamed, M.A., Abdelrhman, N.S.: Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods. Cubo A Math. J. 15(3), 89–103 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Nemati, S., Sedaghat, S., Mohammadi, I.: A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 308, 231–242 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Kumar, K., Pandey, R.K., Sharma, S.: Comparative study of three numerical schemes for fractional integro-differential equations. J. Comput. Appl. Math. 315, 287–302 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Turmetov, B., Abdullaev, J.: Analytic solutions of fractional integro-differential equations of Volterra type. IOP conference series. J. Phys: Conf. Ser. 890, 012113 (2017)

    Google Scholar 

  17. 17.

    Maleki, M., Kajani, M.T.: Numerical approximations for Volterra’s population growth model with fractional order via a multi-domain pseudospectral method. Appl. Math. Model. 39, 4300–4308 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Karimi Vanani, S., Aminataei, A.: Operational Tau approximation for a general class of fractional integro-differential equations. Comput. Appl. Math. 30(3), 655–674 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Nazari Susahab, D., Shahmorad, S., Jahanshahi, M.: Efficient quadrature rules for solving nonlinear fractional integro-differential equations of the Hammerstein type. Appl. Math. Model. 39, 5452–5458 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Zhao, J., Xiao, J., Ford, N.J.: Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algor. 65, 723–743 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Zhu, L., Fan, Q.: Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW. Commun. Nonlinear Sci. Numer. Simulat. 18, 1203–1213 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Jiang, W., Tian, T.: Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method. Appl. Math. Model. 39, 4871–4876 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Fahim, A., Fariborzi Araghi, M.A., Rashidinia, J., Jalalvand, M.: Numerical solution of Volterra partial integro-differential equations based on sinc-collocation method. Adv. Differ. Equ. 1, 362 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Alkan, S.: A numerical method for solution of integro-differential equations of fractional order. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21(2), 82–89 (2017)

    Article  Google Scholar 

  25. 25.

    Nemati, S., Lima, P.M.: Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions. Appl. Math. Comput. 327, 79–92 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Pedas, A., Tamme, E., Vikerpuur, M.: Spline collocation for fractional weakly singular integro-differential equations. Appl. Numer. Math. 110, 204–214 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Elbeleze, A.A., Kılıçman, A., Taib, M.T.: Approximate solution of integro-differential equation of fractional (arbitrary) order. J. King Saud Univ. Sci. 28, 61–68 (2016)

    Article  Google Scholar 

  28. 28.

    Alkan, S., Hatipoglu, V.F.: Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order. Tbilisi Math. J. 10(2), 1–13 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Dehestani, H., Ordokhani, Y., Razzaghi, M.: Hybrid functions for numerical solution of fractional Fredholm-Volterra functional integro-differential equations with proportional delays. Int. J. Numer. Model. Electron. Netw. Dev. Fields 32(5), e2606 (2019)

    Article  Google Scholar 

  30. 30.

    Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Numerical solution of nonlinear mixed Fredholm-Volterra integro-differential equations of fractional order by Bernoulli wavelets. Comput. Methods Differ. Equ. 7(2), 163–176 (2019)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Loh, J. R., Phang, C., Isah, A.: New operational matrix via Genocchi polynomials for solving Fredholm-Volterra fractional integro-differential equations. Adv. Math. Phys. (2017)

  32. 32.

    Ali, M.R., Hadhoud, A.R., Srivastava, H.M.: Solution of fractional Volterra-Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method. Adv. Differ. Equ. 2019(1), 115 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Dehestani, H., Ordokhani, Y., Razzaghi, M.: Combination of Lucas wavelets with Legendre-Gauss quadrature for fractional Fredholm-Volterra integro-differential equations. J. Comput. Appl. Math. 382, 113070 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Bayram, M., Hatipoglu, V.F., Alkan, S., Das, S.E.: A solution method for integro-differential equations of conformable fractional derivative. Thermal Sci. 22(1), 7–14 (2018)

    Article  Google Scholar 

  35. 35.

    Schoeffel, L.: An elegant and fast method to solve QCD evolution equations Application to the determination of the gluon content of the Pomeron. Nuclear Instrum. Methods Phys. Res. A 423, 439–445 (1999)

    Article  Google Scholar 

  36. 36.

    Kobayashi, R., Konuma, M., Kumano, S.: FORTRAN program for a numerical solution of the nonsinglet Altarelli-Parisi equation. Comput. Phys. Commun. 86, 264–278 (1995)

    MATH  Article  Google Scholar 

  37. 37.

    Baykus Savasaneril, N., Sezer, M.: Laguerre polynomial solution of high-order linear Fredholm integro-differential equations. New Trends Math. Sci. 4(2), 273–284 (2016)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Gürbüz, B., Sezer, M., Güler, C.: Laguerre collocation method for solving Fredholm integro-differential equations with functional arguments. J. Appl. Math. Article ID 682398, 1–12 (2014)

    MATH  Google Scholar 

  39. 39.

    Yüzbaşı, Ş.: Laguerre approach for solving pantograph-type Volterra integro-differential equations. Appl. Math. Comput. 232, 1183–1199 (2014)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Al-Zubaidy, K.A.: A Numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method. Int. J. Sci. Technol. 8(4), 51–55 (2013)

    Google Scholar 

  41. 41.

    Gürbüz, B., Sezer, M.: A new computational method based on Laguerre polynomials for solving certain nonlinear partial integro differential equations. Acta Phys. Polon. A 132(3), 561–563 (2017)

    Article  Google Scholar 

  42. 42.

    Gürbüz, B., Sezer, M.: A numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method. Int. J. Appl. Phys. Math. 7(1), 49–58 (2017)

    Article  Google Scholar 

  43. 43.

    Gürbüz, B., Sezer, M.: Laguerre polynomial solutions of a class of delay partial functional differential equations. Acta Phys. Polon. A 132(3), 558–560 (2017)

    Article  Google Scholar 

  44. 44.

    Mahdy, A.M.S., Shwayyea, R.T.: Numerical solution of fractional integro-differential equations by least squares method and shifted Laguerre polynomials pseudo-spectral method. Int. J. Sci. Eng. Res. 7(4), 1589–1596 (2016)

    Google Scholar 

  45. 45.

    Varol Bayram, D., Daşcıoğlu, A.: A method for fractional Volterra integro-differential equations by Laguerre polynomials. Adv. Differ. Equ. 2018, 466 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Daşcıoğlu, A., Varol Bayram, D.: Solving fractional Fredholm integro-differential equations by Laguerre polynomials. Sains Malaysiana 48(1), 251–257 (2019)

    MATH  Article  Google Scholar 

  47. 47.

    Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Bell, W.W.: Special Functions for Scientists and Engineers. D. Van Nostrand Company, London (1968)

    Google Scholar 

  50. 50.

    Lebedev, N.N.: Special Functions and Their Applications. Dover Publications, New York (1972)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dilek Varol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daşcıoğlu, A., Varol, D. Laguerre polynomial solutions of linear fractional integro-differential equations. Math Sci (2021). https://doi.org/10.1007/s40096-020-00369-y

Download citation

Keywords

  • Laguerre polynomials
  • Fractional Fredholm–Volterra integro-differential equations
  • Conformable fractional derivative

Mathematics Subject Classification

  • 26A33
  • 33C45
  • 34A08
  • 45J05