Determining a common set of weights in data envelopment analysis by bootstrap

Abstract

Data envelopment analysis (DEA) is a model for measuring the efficiency of decision-making units (DMUs). The majority of DEA models suffer from drawbacks, in particular, changes in the weights of inputs and outputs. Consequently, the efficiency of DMUs is measured with different weights and so it is important to establish how to evaluate all DMUs using a common weight to optimize their efficiency at the same time. This study provides a new algorithm to overcome the weaknesses of the previous model. The proposed algorithm based on the bootstrap simulation establishes a bound for the input and output weights. Common weights are obtained by solving this model using bounded weights. According to the results of a numerical example solved by this model, it outperforms conventional models in terms of ranking DMUs.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Farrell, M.J.: The measurement of productive efficiency. J. R. Stat. Soc. Ser. A Gen. 120(3), 253–290 (1957)

    Google Scholar 

  2. 2.

    Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Cook, W.D., Roll, Y., Kazakov, A.: A dea model for measuring the relative eeficiency of highway maintenance patrols. INFOR Inf. Syst. Oper. Res. 28(2), 113–124 (1990)

    Google Scholar 

  4. 4.

    Roll, Y., Cook, W.D., Golany, B.: Controlling factor weights in data envelopment analysis. IIE Trans. 23(1), 2–9 (1991)

    Google Scholar 

  5. 5.

    Hashimoto, A., Wu, D.-A.: A DEA-compromise programming model for comprehensive ranking. J. Oper. Res. Soc. Jpn. 47(2), 73–81 (2004)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Kao, C., Hung, H.-T.: Data envelopment analysis with common weights: the compromise solution approach. J. Oper. Res. Soc. 56(10), 1196–1203 (2005)

    MATH  Google Scholar 

  7. 7.

    Jahanshahloo, G.R., et al.: A note on some of DEA models and finding efficiency and complete ranking using common set of weights. Appl. Math. Comput. 166(2), 265–281 (2005)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Liu, F.-H.F., Peng, H.H.: Ranking of units on the DEA frontier with common weights. Comput. Oper. Res. 35(5), 1624–1637 (2008)

    MATH  Google Scholar 

  9. 9.

    Makui, A., et al.: A goal programming method for finding common weights in DEA with an improved discriminating power for efficiency. J. Ind. Syst. Eng. 1(4), 293–303 (2008)

    Google Scholar 

  10. 10.

    Saati, S.: Determining a common set of weights in DEA by solving a linear programming. J. Ind. Eng. Int. 4, 51–56 (2008)

    Google Scholar 

  11. 11.

    Chen, Y.-W., Larbani, M., Chang, Y.-P.: Multiobjective data envelopment analysis. J. Oper. Res. Soc. 60(11), 1556–1566 (2009)

    MATH  Google Scholar 

  12. 12.

    Amirteimoori, A., Kordrostami, S.: Common weights determination in data envelopment analysis. Iran. J. Optim. 3(1), 199–210 (2009)

    Google Scholar 

  13. 13.

    Zohrehbandian, M., Makui, A., Alinezhad, A.: A compromise solution approach for finding common weights in DEA: an improvement to Kao and Hung’s approach. J. Oper. Res. Soc. 61(4), 604–610 (2010)

    MATH  Google Scholar 

  14. 14.

    Wang, Y.-M., Luo, Y., Lan, Y.-X.: Common weights for fully ranking decision making units by regression analysis. Expert Syst. Appl. 38(8), 9122–9128 (2011)

    Google Scholar 

  15. 15.

    Saati, S., et al.: A common set of weight approach using an ideal decision making unit in data envelopment analysis. J. Ind. Manag. Optim. 8(3), 623–637 (2012)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Omrani, H.: Common weights data envelopment analysis with uncertain data: a robust optimization approach. Comput. Ind. Eng. 66(4), 1163–1170 (2013)

    Google Scholar 

  17. 17.

    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Kiani Mavi, R., Kazemi, S., Jahangiri, J.M.: Developing common set of weights with considering nondiscretionary inputs and using ideal point method. J. Appl. Math. 2013, 1–9 (2013)

    MathSciNet  Google Scholar 

  19. 19.

    Borzoei, S., Zohrehbandian, M.: Common weights for the evaluation of decision-making units with nonlinear virtual inputs and outputs. Int. J. Data Envel. Anal. 1(3), 167–173 (2014)

    Google Scholar 

  20. 20.

    Payan, A., Noora, A.A., Lotfi, F.H.: A ranking method based on common weights and benchmark point. Appl. Appl. Math. 9(1), 318–329 (2014)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Saati, S., Nayebi, N.: An algorithm for determining common weights by concept of membership function. J. Linear Topol. Algebra 4(3), 165–172 (2015)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Salahi, M., Torabi, N., Amiri, A.: An optimistic robust optimization approach to common set of weights in DEA. Measurement 93, 67–73 (2016)

    Google Scholar 

  23. 23.

    Yekta, A.P., et al.: Data envelopment analysis with common weights: the weight restriction approach. Math. Sci. 12(3), 197–203 (2018)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Efron, B.: Computers and the theory of statistics: thinking the unthinkable. SIAM Rev. 21(4), 460–480 (1979)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Efron, B., Tibshirani, R.J.: An introduction to the bootstrap. Number 57 in Monographs on statistics and applied probability. Chapman & Hall, New York (1993)

    Google Scholar 

  26. 26.

    Simar, L.: Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-parametric and semi-parametric methods with bootstrapping. In: International Applications of Productivity and Efficiency Analysis, Springer, pp. 167–199 (1992)

  27. 27.

    Simar, L., Wilson, P.W.: Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models. Manag. Sci. 44(1), 49–61 (1998)

    MATH  Google Scholar 

  28. 28.

    Ferrier, G.D., Hirschberg, J.G.: Can we bootstrap DEA scores? J. Prod. Anal. 11(1), 81–92 (1999)

    Google Scholar 

  29. 29.

    Simar, L., Wilson, P.W.: Of course we can bootstrap DEA scores! But does it mean anything? Logic trumps wishful thinking. J. Prod. Anal. 11(1), 93–97 (1999)

    Google Scholar 

  30. 30.

    Simar, L., Wilson, P.W.: Testing restrictions in nonparametric efficiency models. Commun. Stat. Simul. Comput. 30(1), 159–184 (2001)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Simar, L., Wilson, P.W.: Non-parametric tests of returns to scale. Eur. J. Oper. Res. 139(1), 115–132 (2002)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Charnes, A., et al.: Cone ratio data envelopment analysis and multi-objective programming. Int. J. Syst. Sci. 20(7), 1099–1118 (1989)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Thompson, M., Ellis, R., Wildavsky, A.: Cultural Theory. Boulder, Colo. Westview Press, Boulder (1990)

    Google Scholar 

  34. 34.

    Hatami-Marbini, A., et al.: A common-weights DEA model for centralized resource reduction and target setting. Comput. Ind. Eng. 79, 195–203 (2015)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saber Saati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amiri, A., Saati, S. & Amirteimoori, A. Determining a common set of weights in data envelopment analysis by bootstrap. Math Sci (2020). https://doi.org/10.1007/s40096-020-00344-7

Download citation

Keywords

  • Bootstrap
  • Common weights
  • Data envelopment analysis
  • Efficiency
  • Ranking