An implicit approach to the micropolar fluid model of blood flow under the effect of body acceleration


In the present study, the problem of simulating a non-Newtonian and two-dimensional blood flow in a flexible stenosed artery is examined by an implicit finite difference method. The streaming blood in the human artery is represented as a micropolar fluid. The governing non-Linear partial differential equations are modeled in cylindrical coordinates system and following a suitable radial coordinate transformation, they are solved numerically employing a Crank–Nicolson method with a suitable choice of initial and boundary conditions. An implicit approach is obtained for velocity distribution and the numerical solutions of flow rate and resistance impedance at the stenosis throat are founded by using velocity distribution. Effects of different types of tapered arteries, the stenosis and the amplitudes of body acceleration on the blood flow characteristics are presented graphically and discussed briefly. The motion of the arterial wall is paid due attention by comparing the blood flow characteristics through the elastic artery with the rigid ones. It is observed that the obtained results are in good agreement with previously conducted studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Abbas, Z., Iftikhar, B., Shabbir, M., Alghamdi, M., Iqbal, J.: Numerical treatment of slip velocity and catheterization on the gravity flow of non-Newtonian fluid model through a uniform blood vessel. Phys. Scr. (2020).

    Article  Google Scholar 

  2. 2.

    Ali, N., Zaman, A., Sajid, M.: Unsteady blood flow through a tapered stenotic artery using Sisko model. Comput. Fluids 101, 42–49 (2014)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Andersson, H.I., Halden, R., Glomsaker, T.: Effects of surface irregularities on flow resistance in differently shaped arterial stenoses. J. Biomech. 33(1), 1257–1262 (2000)

    Google Scholar 

  4. 4.

    Bugliarello, G., Sevilla, J.: Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7(2), 85–107 (1970)

    Google Scholar 

  5. 5.

    Chakravarty, S., Mandal, P.K.: Two-dimensional blood flow through tapered arteries under stenotic conditions. Int. J. Nonlinear Mech. 35(5), 779–793 (2000)

    MATH  Google Scholar 

  6. 6.

    Chakravarty, S., Mandal, P.K.: A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosis subjected to body acceleration. Math. Comput. Model. 24(1), 43–58 (1996)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Chakravarty, S., Mandal, P.K.: Unsteady flow of a two-layer bloodstream past a tapered flexible artery under stenotic conditions. Comput. Methods Appl. Math. 4(4), 391–409 (2004)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Changdar, S., De, S.: Investigation of nanoparticle as a drug carrier suspended in a blood flowing through an inclined multiple stenosed artery. Bionanoscience 8(1), 166–178 (2018)

    Google Scholar 

  9. 9.

    Chaturani, P., Upadhya, V.: On micropolar fluid model for blood flow through narrow tubes. Biorheology 16(6), 419–428 (1979)

    Google Scholar 

  10. 10.

    Devanathan, R., Parvathamma, S.: Flow of micropolar fluid through a tube with stenosis. Med. Biol. Eng. Comput. 21(1), 438–445 (1983)

    MATH  Google Scholar 

  11. 11.

    Ellahi, R., Rahman, S.U., Gulzar, M.M., Nadeem, S., Vafai, K.: A mathematical study of non-Newtonian micropolar fluid in arterial blood flow through composite stenosis. Appl. Math. Inf. Sci. 8(4), 1567 (2014)

    Google Scholar 

  12. 12.

    Gudino, E., Oishi, C.M., Sequeira, A.: Influence of non-Newtonian blood flow models on drug deposition in the arterial wall. J. Non-Newton Fluid. Mech. 274, 104206 (2019)

    MathSciNet  Google Scholar 

  13. 13.

    Haghighi, A.R., Pirhadi, N.: A numerical study of heat transfer and flow characteristics of pulsatile blood flow in a tapered artery with a combination of stenosis and aneurysm. Int. J. Heat Technol. 37(1), 11–21 (2019)

    Google Scholar 

  14. 14.

    Haghighi, A.R., Asl, M.S., Kiyasatfar, M.: Mathematical modeling of unsteady blood flow through elastic tapered artery with overlapping stenosis. J. Braz. Soc. Mech. Sci. Eng. 37(2), 571–578 (2015)

    Google Scholar 

  15. 15.

    Haghighi, A.R., Asl, M.S.: Mathematical modelling of micropolar fluid flow through an overlapping arteries stenosis. Int. J. Biomath. 8(04), 1550056 (2015)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Haghighi, A.R., Kabdool, A.A., Asl, M.S., Kiyasatfar, M.: Numerical investigation of pulsatile blood flow in stenosed artery. Int. J. Appl. Comput. Math. 2(4), 649–662 (2016)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Ikbal, M.A., Chakravarty, S., Mandal, P.K.: Two-layered micropolar fluid flow through stenosed artery: effect of peripheral layer thickness. Comput. Math. Appl. 58(7), 1328–1339 (2009)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Ismail, Z., Abdullah, I., Mustapha, N., Amin, N.: A power-law model of blood flow through a tapered overlapping stenosed artery. Appl. Math. Comput. 195(2), 669–680 (2008)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Long, Q., Xu, X., Ramnarine, K., Hoskins, P.: Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34(10), 1229–1242 (2001)

    Google Scholar 

  20. 20.

    Mandal, P., Chakravarty, S., Mandal, A., Amin, A.: Effect of body acceleration on un-steady pulsatile flow of non-Newtonian fluid through a stenosed artery. Appl. Math. Comput. 189(1), 766–779 (2007)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Mandal, P.K., et al.: Unsteady response of non-Newtonian blood flow through a stenosed artery in magnetic field. Appl. Math. Comput. 230(1), 243–259 (2009)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Mandal, P.K.: An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis. Int. J. Nonlinear Mech. 40(1), 151–164 (2005)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Mekheimer, K.S., El Kot, M.: The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta. Mech. Sin. 24(6), 637–644 (2008)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Misra, J., Chandra, S., Shit, G., Kundu, P.: Thermodynamic and magnetohydrodynamic analysis of blood flow considering rotation of micro-particles of blood. J. Mech. Med. Biol. 13(1), 1350013 (2013)

    Google Scholar 

  25. 25.

    Mirsa, J.C., Sahu, B.K.: Flow through blood vessels under the action of a periodic acceleration field: a mathematical analysis. Comput. Math. Appl. 16(2), 993–1016 (1988)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Mustapha, N., Amin, N., Chakravarty, S., Mandal, P.K.: Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries. Comput. Biol. Med. 39(1), 896–906 (2009)

    Google Scholar 

  27. 27.

    Ponalagusamy, R., Manchi, R.: Particle-fluid two phase modeling of electro-magneto hydrodynamic pulsatile flow of Jeffrey fluid in a constricted tube under periodic body acceleration. Eur. J. Mech. B Fluids 81, 76–92 (2020)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Sankar, D., Lee, U.: FDM analysis for MHD flow of a non-Newtonian fluid for blood flow in stenosed arteries. J. Mech. Sci. Technol. 25(10), 2573–2581 (2011)

    Google Scholar 

  29. 29.

    Shit, G.C., Roy, M.: Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration. J. Mech. Med. Biol. 11(3), 643–661 (2011)

    Google Scholar 

  30. 30.

    Shit, G.C., Majee, S.: Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment. J. Magn. Magn. Mater. 388, 106–115 (2015)

    Google Scholar 

  31. 31.

    Toghraie, D., Esfahani, N.N., Zarringhalam, M., Shirani, N., Rostami, S.: Blood flow analysis inside different arteries using non-Newtonian Sisko model for application in biomedical engineering. Comput. Methods Prog. Biomed. 190, 105338 (2020).

    Article  Google Scholar 

  32. 32.

    Yamaguchi, N.: Existence of global strong solution to the micropolar fluid system in a bounded domain. Math. Methods Appl. Sci. 28(13), 1507–1526 (2005)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Zaman, A., Ali, N., Sajad, M., Hayat, T.: Effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered time-variant stenotic artery. AIP Adv. 5(3), 037129 (2015)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ahmad Reza Haghighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haghighi, A.R., Aliashrafi, N. & Asl, M.S. An implicit approach to the micropolar fluid model of blood flow under the effect of body acceleration. Math Sci 14, 269–277 (2020).

Download citation


  • Blood flow
  • Micropolar fluid
  • Body acceleration
  • Crank–Nicolson method