Skip to main content
Log in

Numerical solutions of two-dimensional fractional Schrodinger equation

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this article, the authors proposed Chebyshev pseudospectral method for numerical solutions of two-dimensional nonlinear Schrodinger equation with fractional-order derivative in both time and space. Fractional-order partial differential equations are considered as generalizations of classical integer-order partial differential equations. The proposed method is established in both time and space to approximate the solutions. The Caputo fractional derivatives are used to define the new fractional derivatives matrix at CGL points. Using the Chebyshev fractional derivatives matrices, the given problem is reduced to diagonally block system of nonlinear algebraic equations, which will be solved using Newton–Raphson iterative method. Some model examples of the equations, defined on a rectangular domain, have tested with various values of fractional order \(\alpha\) and \(\beta\). Moreover, numerical solutions are demonstrated to justify the theoretical results and confirm the expected convergence rate. For the proposed method, highly accurate numerical results are obtained which are compared with the analytical solution to confirm the accuracy and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdel-Salam, E.A., Yousif, E.A., El-Aasser, M.A.: Analytical solution of the space-time fractional nonlinear schrödinger equation. Rep. Math. Phys. 77(1), 19–34 (2016)

    Article  MathSciNet  Google Scholar 

  2. Asgari, Z., Hosseini, S.: Efficient numerical schemes for the solution of generalized time fractional Burgers type equations. Numer. Algorithms 77(3), 763–792 (2018)

    Article  MathSciNet  Google Scholar 

  3. Atangana, A., Cloot, A.H.: Stability and convergence of the space fractional variable-order Schrödinger equation. Adv. Differ. Equ. 2013(1), 80 (2013)

    Article  Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publications, Mineola (2001)

    MATH  Google Scholar 

  5. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)

    Article  MathSciNet  Google Scholar 

  6. Chechkin, A., Gorenflo, R., Sokolov, I.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66(4), 046129 (2002)

    Article  Google Scholar 

  7. Chen, J.-B., Qin, M.-Z., Tang, Y.-F.: Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 43(8–9), 1095–1106 (2002)

    Article  MathSciNet  Google Scholar 

  8. Dehghan, M., Taleei, A.: A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput. Phys. Commun. 181(1), 43–51 (2010)

    Article  Google Scholar 

  9. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  Google Scholar 

  10. Dong, J., Xu, M.: Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 48(7), 072105 (2007)

    Article  MathSciNet  Google Scholar 

  11. Fan, W., Liu, F.: A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl. Math. Lett. 77, 114–121 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fan, W., Qi, H.: An efficient finite element method for the two-dimensional nonlinear time-space fractional Schrödinger equation on an irregular convex domain. Appl. Math. Lett. 86, 103–110 (2018)

    Article  MathSciNet  Google Scholar 

  13. Fan, W., Liu, F., Jiang, X., Turner, I.: A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain. Fract. Cal. Appl. Anal. 20(2), 352–383 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47(8), 082104 (2006)

    Article  MathSciNet  Google Scholar 

  15. Jumarie, G.: An approach to differential geometry of fractional order via modified Riemann–Liouville derivative. Acta Math. Sin. Engl. Ser. 28(9), 1741–1768 (2012)

    Article  MathSciNet  Google Scholar 

  16. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin fems for nonlinear time-fractional Schrodinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    Article  MathSciNet  Google Scholar 

  17. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  18. Luchko, Y.F., Rivero, M., Trujillo, J.J., Velasco, M.P.: Fractional models, non-locality, and complex systems. Comput. Math. Appl. 59(3), 1048–1056 (2010)

    Article  MathSciNet  Google Scholar 

  19. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  Google Scholar 

  20. Mao, Z., Karniadakis, G.E.: Fractional Burgers equation with nonlinear non-locality: spectral vanishing viscosity and local discontinuous Galerkin methods. J. Comput. Phys. 336, 143–163 (2017)

    Article  MathSciNet  Google Scholar 

  21. Mohebbi, A.: Analysis of a numerical method for the solution of time fractional Burgers equation. Bull. Iran. Math. Soc. 44(2), 457–480 (2018)

    Article  MathSciNet  Google Scholar 

  22. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Bound. Elem. 37(2), 475–485 (2013)

    Article  MathSciNet  Google Scholar 

  23. Mohebbi, A., Dehghan, M.: The use of compact boundary value method for the solution of two-dimensional Schrödinger equation. J. Comput. Appl. Math. 225(1), 124–134 (2009)

    Article  MathSciNet  Google Scholar 

  24. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier, Amsterdam (1974)

    MATH  Google Scholar 

  25. Ross, B.: The development of fractional calculus 1695–1900. Hist. Math. 4(1), 75–89 (1977)

    Article  MathSciNet  Google Scholar 

  26. Rudolf, H.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  27. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives-Theory and Applications. Gordon and Breach, Linghorne (1993)

    MATH  Google Scholar 

  28. Sweilam, N.H., Hasan, M.A.: Numerical solutions for 2-D fractional Schrödinger equation with the Riesz–Feller derivative. Math. Comput. Simul. 140, 53–68 (2017)

    Article  Google Scholar 

  29. Trefethen, L.N.: Finite Difference And Spectral Methods For Ordinary And Partial Differential Equations (1996)

  30. Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    Article  MathSciNet  Google Scholar 

  31. Yousif, E., Abdel-Salam, E.-B., El-Aasser, M.: On the solution of the space-time fractional cubic nonlinear Schrödinger equation. Results Phys. 8, 702–708 (2018)

    Article  Google Scholar 

  32. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhang, H., Jiang, X., Wang, C., Fan, W.: Galerkin-legendre spectral schemes for nonlinear space fractional Schrödinger equation. Numer. Algorithms 79(1), 337–356 (2018)

    Article  MathSciNet  Google Scholar 

  34. Zhao, X., Sun, Z.-Z., Hao, Z.-P.: A fourth-order compact adi scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J. Sci. Comput. 36(6), A2865–A2886 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author thankfully acknowledges the Ministry of Human Resource Development, India, for providing financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mittal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, A.K., Balyan, L.K. Numerical solutions of two-dimensional fractional Schrodinger equation. Math Sci 14, 129–136 (2020). https://doi.org/10.1007/s40096-020-00323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-020-00323-y

Keywords

Navigation