The following lemma gives the existence of the operators defined by (4).
Lemma 1
If
\(f\in L_{1,\varphi }( \mathbb {R} ^{2})\), then the operator
\(L_{\lambda }\left( f;x,y\right)\)
defines a continuous transformation acting on \(L_{1,\varphi }( \mathbb {R} ^{2}).\)
Proof
Since \(L_{\lambda }(f;x,y)\) is linear, it is sufficient to show that the expression given by
$$\begin{aligned} \left\| L_{\lambda }\right\| _{\varphi }=\underset{f\ne 0}{\sup } \frac{\left\| L_{\lambda }(f;x,y)\right\| _{L_{1,\varphi }( \mathbb {R} ^{2})}}{\left\| f\right\| _{L_{1,\varphi }( \mathbb {R} ^{2})}} \end{aligned}$$
is bounded.
The following expression
$$\begin{aligned} \left\| f\right\| _{L_{1,\varphi }( \mathbb {R} ^{2})}=\underset{ \mathbb {R} ^{2}}{\iint }\left| \frac{f(t,s)}{\varphi (t,s)}\right| \mathrm{d}s\,\mathrm{d}t, \end{aligned}$$
(6)
defines a norm in the space \(L_{1,\varphi }( \mathbb {R} ^{2})\) [24]. Using inequality (5) and Fubini’s theorem [14], we have
$$\begin{aligned} \left\| L_{\lambda }(f;x,y)\right\| _{L_{1,\varphi }( \mathbb {R} ^{2})}= & {} \underset{ \mathbb {R} ^{2}}{\iint }\frac{1}{\varphi (x,y)}\left| \underset{ \mathbb {R} ^{2}}{\iint }f(t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t\right| \mathrm{d}y\,\mathrm{d}x \\= & {} \underset{ \mathbb {R} ^{2}}{\iint }\frac{1}{\varphi (x,y)}\left| \underset{ \mathbb {R} ^{2}}{\iint }f(t,s)K_{\lambda }\left( \sqrt{\left( t-x\right) ^{2}+\left( s-y\right) ^{2}}\right) \mathrm{d}s\mathrm{d}t\right| \mathrm{d}y\,\mathrm{d}x \\\le & {} \underset{ \mathbb {R} ^{2}}{\iint }\frac{1}{\varphi (x,y)}\left( \underset{ \mathbb {R} ^{2}}{\iint }\left| f(t+x,s+y)\right| K_{\lambda }\left( \sqrt{ t^{2}+s^{2}}\right) \mathrm{d}s\,\mathrm{d}t\right) \mathrm{d}y\,\mathrm{d}x \\= & {} \underset{ \mathbb {R} ^{2}}{\iint }K_{\lambda }\left( \sqrt{t^{2}+s^{2}}\right) \left( \underset{ \mathbb {R} ^{2}}{\iint }\left| \frac{f(t+x,s+y)}{\varphi (x,y)}\right| \mathrm{d}y\,\mathrm{d}x\right) \mathrm{d}s\,\mathrm{d}t\\= & {} \underset{ \mathbb {R} ^{2}}{\iint }K_{\lambda }\left( \sqrt{t^{2}+s^{2}}\right) \left( \underset{ \mathbb {R} ^{2}}{\iint }\left| \frac{f(t+x,s+y)}{\varphi (x,y)}\right| \frac{ \varphi (t+x,s+y)}{\varphi (t+x,s+y)}\mathrm{d}y\,\mathrm{d}x\right) \mathrm{d}s\,\mathrm{d}t \\\le & {} \underset{ \mathbb {R} ^{2}}{\iint }K_{\lambda }\left( \sqrt{t^{2}+s^{2}}\right) \left( \underset{ \mathbb {R} ^{2}}{\iint }\left| \frac{f(t+x,s+y)}{\varphi (t+x,s+y)}\right| \frac{\varphi (x,y)\varphi (t,s)}{\varphi (x,y)}\mathrm{d}y\,\mathrm{d}x\right) \mathrm{d}s\,\mathrm{d}t \\= & {} \underset{ \mathbb {R} ^{2}}{\iint }K_{\lambda }\left( \sqrt{t^{2}+s^{2}}\right) \varphi (t,s)\mathrm{d}s\,\mathrm{d}t \underset{ \mathbb {R} ^{2}}{\iint }\left| \frac{f(t+x,s+y)}{\varphi (t+x,s+y)}\right| \mathrm{d}y\,\mathrm{d}x \\\le & {} M\left\| f\right\| _{L_{1,\varphi }( \mathbb {R} ^{2})}. \end{aligned}$$
Thus, the proof is completed. \(\square\)
The following theorem gives a Fatou-type pointwise convergence of the integral operators of type (4) at \(\mu\)-generalized Lebesgue point of \(f\in L_{1,\varphi }( \mathbb {R} ^{2}).\)
Theorem 1
If
\(\left( x_{0},y_{0}\right)\)
is a
\(\mu\)-generalized Lebesgue point of
\(f\in L_{1,\varphi }\left( \mathbb {R} ^{2}\right) ,\)
then
$$\begin{aligned} \underset{\left( x,y,\lambda \right) \rightarrow \left( x_{0},y_{0},\lambda _{0}\right) }{\lim }L_{\lambda }\left( f;x,y\right) =f\left( x_{0},y_{0}\right) \end{aligned}$$
on any set
Z
on which the function
$$\begin{aligned}&\overset{x_{0}+\delta }{\underset{x_{0}-\delta }{\int }}\overset{ y_{0}+\delta }{\underset{y_{0}-\delta }{\int }}K_{\lambda }\left( \sqrt{ (t-x)^{2}+(s-y)^{2}}\right) \rho _{1}\left( \left| x_{0}-t\right| \right) \rho _{2}\left( \left| y_{0}-s\right| \right) \mathrm{d}s\,\mathrm{d}t \\&\quad +\,2\mu _{2}\left( \left| y_{0}-y\right| \right) \overset{ x_{0}+\delta }{\underset{x_{0}-\delta }{\int }}K_{\lambda }\left( \left| t-x\right| \right) \rho _{1}\left( \left| x_{0}-t\right| \right) \mathrm{d}t \\&\quad +\,2\mu _{1}\left( \left| x_{0}-x\right| \right) \overset{ y_{0}+\delta }{\underset{y_{0}-\delta }{\int }}K_{\lambda }\left( \left| s-y\right| \right) \rho _{2}\left( \left| y_{0}-s\right| \right) \mathrm{d}s \\&\quad +\,4K_{\lambda }\left( 0\right) \mu _{1}\left( \left| x_{0}-x\right| \right) \mu _{2}\left( \left| y_{0}-y\right| \right) \\ \end{aligned}$$
is bounded as
\(\left( x,y,\lambda \right)\)
tends to
\(\left( x_{0},y_{0},\lambda _{0}\right)\).
Proof
Let \(\left| x_{0}-x\right| <\frac{\delta }{2}\) and \(\left| y_{0}-y\right| <\frac{\delta }{2},\) for any \(0<\delta <\delta _{0}.\) Furthermore, let \(0<x_{0}-x<\frac{\delta }{2}\) and \(0<y_{0}-y<\frac{ \delta }{2}\) for any \(0<\delta <\delta _{0}\). Since \(\left( x_{0},y_{0}\right) \in \mathbb {R}^{2}\) is a \(\mu\)-generalized Lebesgue point of function \(f\in L_{1,\varphi }\left( \mathbb {R}^{2}\right) ,\) for all given \(\varepsilon >0\), there exists \(\delta >0\), such that for all h and k satisfying \(0<h,k\le \delta ,\) we have the following inequality:
$$\begin{aligned} \overset{x_{0}+h}{\underset{x_{0}}{\int }}\overset{y_{0}}{\underset{y_{0}-k}{ \int }}\left| \frac{f\left( t,s\right) }{\varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \mathrm{d}s\,\mathrm{d}t<\varepsilon \mu _{1}(h)\mu _{2}(k). \end{aligned}$$
(7)
Write
$$\begin{aligned} \left| L_{\lambda }\left( f;x,y\right) -f\left( x_{0},y_{0}\right) \right| =\left| \underset{\mathbb {R}^{2}}{\iint }f\left( t,s\right) H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t-f\left( x_{0},y_{0}\right) \right| . \end{aligned}$$
Adding and subtracting the expression given by \(\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\underset{\mathbb {R} ^{2}}{\iint }\varphi (t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t\) to the right-hand side of the above equality, we have
$$\begin{aligned} \left| L_{\lambda }\left( f;x,y\right) -f\left( x_{0},y_{0}\right) \right|&= \left| \underset{\mathbb {R}^{2}}{\iint }f\left( t,s\right) \frac{\varphi \left( t,s\right) }{\varphi \left( t,s\right) } H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t-f\left( x_{0},y_{0}\right) \frac{ \varphi \left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) } \right. \\&\quad+\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) } \underset{\mathbb {R}^{2}}{\iint }\varphi (t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t \\&\quad\left. -\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\underset{\mathbb {R}^{2}}{\iint }\varphi (t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t\right| \\&\le \underset{\mathbb {R}^{2}}{\iint }\left| \frac{f\left( t,s\right) }{\varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \varphi (t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t \\&\quad+\left| \frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \left| \underset{\mathbb {R}^{2}}{\iint } \varphi (t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t-\varphi \left( x_{0},y_{0}\right) \right| \\&=\, {} I_{1}+I_{2}. \end{aligned}$$
Since \(H_{\lambda }\) is a radial function, we may write
$$\begin{aligned} I_{2}=\, & {} \left| \frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \left| \underset{\mathbb {R}^{2}}{\iint } \varphi (t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t-\varphi \left( x_{0},y_{0}\right) \right| \\=\, & {} \left| \frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \left| \underset{\mathbb {R}^{2}}{\iint } \varphi (t,s)K_{\lambda }\left( \sqrt{\left( t-x\right) ^{2}+\left( s-y\right) ^{2}}\right) \mathrm{d}s\,\mathrm{d}t-\varphi \left( x_{0},y_{0}\right) \right| . \end{aligned}$$
In view of condition (a) of class \(A_{\varphi },\)
\(I_{2}\rightarrow 0\) as \(\left( x,y,\lambda \right)\) tends to \(\left( x_{0},y_{0},\lambda _{0}\right) .\) The integral \(I_{1}\) can be written in the form:
$$\begin{aligned} I_{1}&= \left\{ \underset{\mathbb {R}^{2}\backslash B_{\delta }}{\iint }+ \underset{B_{\delta }}{\iint }\right\} \left| \frac{f\left( t,s\right) }{ \varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \varphi (t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t \\ & = I_{11}+I_{12}, \end{aligned}$$
where
$$\begin{aligned} B_{\delta }=\left\{ \left( t,s\right) :\left( t-x_{0}\right) ^{2}+\left( s-y_{0}\right) ^{2}<\delta ^{2},\left( x_{0},y_{0}\right) \in \mathbb {R} ^{2}\right\} . \end{aligned}$$
In view of definition of \(H_{\lambda },\) and using inequality (5), we have
$$\begin{aligned} I_{11}= & {} \underset{\mathbb {R}^{2}\backslash B_{\delta }}{\iint }\left| \frac{f\left( t,s\right) }{\varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{ \varphi \left( x_{0},y_{0}\right) }\right| \varphi (t,s)H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\mathrm{d}t \\\le & {} \varphi (x,y)\underset{\mathbb {R}^{2}\backslash B_{\delta }}{\iint } \left| \frac{f\left( t,s\right) }{\varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \varphi (t-x,s-y)K_{\lambda }\left( \sqrt{\left( t-x\right) ^{2}+\left( s-y\right) ^{2}}\right) \mathrm{d}s\mathrm{d}t. \end{aligned}$$
Now, using the initial assumptions given as \(0<\left| x_{0}-x\right| <\frac{\delta }{2}\) and \(0<\left| y_{0}-y\right| <\frac{\delta }{2},\) we may define the following set:
$$\begin{aligned} A_{\delta }=\left\{ \left( x,y\right) :\left( x-x_{0}\right) ^{2}+\left( y-y_{0}\right) ^{2}<\frac{\delta ^{2}}{2},\left( x_{0},y_{0}\right) \in \mathbb {R} ^{2}\right\} . \end{aligned}$$
Taking into account the geometric representations of the sets \(B_{\delta }\) and \(A_{\delta }\) gives the inclusion relation \(\mathbb {R}^{2}\backslash B_{\delta }\subseteq \mathbb {R}^{2}\backslash C_{\delta },\) where
$$\begin{aligned} C_{\delta }=\left\{ \left( t,s\right) :\left( t-x\right) ^{2}+\left( s-y\right) ^{2}<\frac{\delta ^{2}}{2},\left( x,y\right) \in A_{\delta }\right\} . \end{aligned}$$
Therefore, we have the following inequality:
$$\begin{aligned} I_{11}\le & {} \varphi (x,y)\underset{\mathbb {R}^{2}\backslash C_{\delta }}{ \iint }\left| \frac{f\left( t,s\right) }{\varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \varphi (t-x,s-y)K_{\lambda }\left( \sqrt{\left( t-x\right) ^{2}+\left( s-y\right) ^{2}}\right) \mathrm{d}s\,\mathrm{d}t \\= & {} \varphi (x,y)\underset{\frac{\delta }{\sqrt{2}}\le \sqrt{u^{2}+v^{2}}}{ \iint }\left| \frac{f\left( u+x,v+y\right) }{\varphi \left( u+x,v+y\right) }-\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \varphi (u,v)K_{\lambda }\left( \sqrt{ u^{2}+v^{2}}\right) \mathrm{d}v\,\mathrm{d}u \\\le & {} \varphi \left( x,y\right) \underset{\frac{\delta }{\sqrt{2}}\le \sqrt{u^{2}+v^{2}}}{\sup }\left[ \varphi (u,v)K_{\lambda }\left( \sqrt{ u^{2}+v^{2}}\right) \right] \left\| f\right\| _{L_{1,\varphi }( \mathbb {R} ^{2})} \\&+\varphi \left( x,y\right) \left| \frac{f(x_{0},y_{0})}{\varphi (x_{0},y_{0})}\right| \underset{\frac{\delta }{\sqrt{2}}\le \sqrt{ u^{2}+v^{2}}}{\iint }\varphi (u,v)K_{\lambda }\left( \sqrt{u^{2}+v^{2}} \right) \mathrm{d}v\,\mathrm{d}u. \end{aligned}$$
Consequently, by conditions (b) and (c) of class \(A_{\varphi },\) and using boundedness of \(\varphi\), \(I_{11}\rightarrow 0\) as \(\left( x,y,\lambda \right) \rightarrow \left( x_{0},y_{0},\lambda _{0}\right) .\)
Now, we prove that \(I_{12}\) tends to zero, as \(\left( x,y,\lambda \right)\) tends to \(\left( x_{0},y_{0},\lambda _{0}\right)\). Since \(\varphi (t,s)\) is bounded on \(B_{\delta },\) it is easy to see that the following inequality
$$\begin{aligned} I_{12}\le \underset{(t,s)\in B_{\delta }}{\sup }\varphi (t,s)\underset{ B_{\delta }}{\iint }\left| \frac{f\left( t,s\right) }{\varphi (t,s)}- \frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) } \right| H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t \end{aligned}$$
holds for \(I_{12}\). Thus, we have
$$\begin{aligned} I_{12}\le & {} \underset{(t,s)\in B_{\delta }}{\sup }\varphi (t,s)\left\{ \overset{x_{0}+\delta }{\underset{x_{0}}{\int }}\overset{y_{0}}{\underset{ y_{0}-\delta }{\int }}+\overset{x_{0}}{\underset{x_{0}-\delta }{\int }} \overset{y_{0}}{\underset{y_{0}-\delta }{\int }}\right\} \left| \frac{ f\left( t,s\right) }{\varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{ \varphi \left( x_{0},y_{0}\right) }\right| H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t \\&+\underset{(t,s)\in B_{\delta }}{\sup }\varphi (t,s)\left\{ \overset{x_{0}}{\underset{x_{0}-\delta }{\int }}\overset{y_{0}+\delta }{\underset{y_{0}}{ \int }}+\overset{x_{0}+\delta }{\underset{x_{0}}{\int }}\overset{ y_{0}+\delta }{\underset{y_{0}}{\int }}\right\} \left| \frac{f\left( t,s\right) }{\varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t \\= & {} \underset{(t,s)\in B_{\delta }}{\sup }\varphi (t,s)(I_{121}+I_{122}+I_{123}+I_{124}). \end{aligned}$$
Let us consider the integral \(I_{121}.\)
Let us define the function \(V\left( t,s\right)\) by
$$\begin{aligned} V\left( t,s\right) :=\underset{x_{0}}{\overset{t}{\int }}\overset{y_{0}}{ \underset{s}{\int }}\left| \frac{f\left( u,v\right) }{\varphi (u,v)}- \frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| \mathrm{d}v\,\mathrm{d}u. \end{aligned}$$
In view of inequality (7), the following expression
$$\begin{aligned} \left| V\left( t,s\right) \right| \le \varepsilon \mu _{1}\left( t-x_{0}\right) \mu _{2}\left( y_{0}-s\right) , \end{aligned}$$
(8)
where \(0<t-x_{0}\le \delta\) and \(0<y_{0}-s\le \delta ,\) holds. From Theorem 2.6 in [20], we can write
$$\begin{aligned} I_{121}=\, & {} {(L)}\overset{x_{0}+\delta }{\underset{x_{0}}{\int }} \overset{y_{0}}{\underset{y_{0}-\delta }{\int }}\left| \frac{f\left( t,s\right) }{\varphi (t,s)}-\frac{f\left( x_{0},y_{0}\right) }{\varphi \left( x_{0},y_{0}\right) }\right| H_{\lambda }\left( t-x,s-y\right) \mathrm{d}s\,\mathrm{d}t \\=\, & {} \left( {LS}\right) \overset{x_{0}+\delta }{\underset{x_{0}}{\int }} \overset{y_{0}}{\underset{y_{0}-\delta }{\int }}H_{\lambda }\left( t-x,s-y\right) d\left[ -V\left( t,s\right) \right] , \end{aligned}$$
where LS denotes Lebesgue–Stieltjes integral. Applying integration by parts (see Theorem 2.2, p. 100 in [20]) to the Lebesgue–Stieltjes integral, we have
$$\begin{aligned} \left| I_{121}\right|= & {} \left| \overset{x_{0}+\delta }{ \underset{x_{0}}{\int }}\overset{y_{0}}{\underset{y_{0}-\delta }{\int }} H_{\lambda }\left( t-x,s-y\right) d\left[ -V\left( t,s\right) \right] \right| \\\le & {} \overset{x_{0}+\delta }{\underset{x_{0}}{\int }}\overset{y_{0}}{ \underset{y_{0}-\delta }{\int }}\left| V\left( t,s\right) \right| \left| dH_{\lambda }\left( t-x,s-y\right) \right| \\&+\,\overset{x_{0}+\delta }{\underset{x_{0}}{\int }}\left| V\left( t,y_{0}-\delta \right) \right| \left| dH_{\lambda }\left( t-x,y_{0}-\delta -y\right) \right| \\&+\,\overset{y_{0}}{\underset{y_{0}-\delta }{\int }}\left| V\left( x_{0}+\delta ,s\right) \right| \left| dH_{\lambda }\left( x_{0}-x+\delta ,s-y\right) \right| \\&+\,\left| V\left( x_{0}+\delta ,y_{0}-\delta \right) \right| H_{\lambda }\left( x_{0}+\delta -x,y_{0}-\delta -y\right) . \end{aligned}$$
If we apply inequality (8) to the last inequality and make change of variables, then we have
$$\begin{aligned} \left| I_{121}\right|\le & {} \varepsilon \overset{x_{0}+\delta -x}{ \underset{x_{0}-x}{\int }}\overset{y_{0}-y}{\underset{y_{0}-\delta -y}{\int } }\mu _{1}\left( t+x-x_{0}\right) \mu _{2}\left( y_{0}-s-y\right) \left| dH_{\lambda }\left( t,s\right) \right| \\&+\varepsilon \mu _{2}(\delta )\overset{x_{0}+\delta -x}{\underset{x_{0}-x}{ \int }}\mu _{1}\left( t+x-x_{0}\right) \left| dH_{\lambda }\left( t,y_{0}-\delta -y\right) \right| \\&+\,\varepsilon \mu _{1}(\delta )\overset{y_{0}-y}{\underset{y_{0}-\delta -y}{ \int }}\mu _{2}\left( y_{0}-s-y\right) \left| dH_{\lambda }\left( x_{0}+\delta -x,s\right) \right| \\&+\,\varepsilon \mu _{1}(\delta )\mu _{2}(\delta )H_{\lambda }\left( x_{0}+\delta -x,y_{0}-\delta -y\right) . \end{aligned}$$
Let us define the following variations:
$$\begin{aligned} P_{1}\left( t,s\right):&=\left\{ \begin{array}{l} \overset{x_{0}+\delta -x}{\underset{t}{\bigvee }}\overset{s}{\underset{ y_{0}-\delta -y}{\bigvee }}\left( H_{\lambda }\left( u,v\right) \right) , \quad x_{0}-x\le t<x_{0}+\delta -x \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \quad y_{0}-\delta -y<s\le y_{0}-y \\ \qquad \qquad \quad 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text {otherwise.} \end{array} \right. \\ P_{2}\left( t\right):&=\left\{ \begin{array}{l} \overset{x_{0}+\delta -x}{\underset{t}{\bigvee }}(H_{\lambda }\left( u,y_{0}-\delta -y\right) ), \ \ x_{0}-x\le t<x_{0}+\delta -x \\ \qquad \qquad \quad 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text {otherwise.} \end{array} \right. \\ P_{3}\left( s\right):&=\left\{ \begin{array}{l} \overset{s}{\underset{y_{0}-\delta -y}{\bigvee }}\left( H_{\lambda }\left( x_{0}-x+\delta ,v\right) \right) , \ \ y_{0}-\delta -y<s\le y_{0}-y \\ 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text {otherwise.} \end{array} \right. \end{aligned}$$
Taking above variations into account and applying bivariate integration by parts method to the last inequality, we have
$$\begin{aligned} \left| I_{121}\right|\le & {} -\varepsilon \overset{x_{0}+\delta -x}{ \underset{x_{0}-x}{\int }}\overset{y_{0}-y}{\underset{y_{0}-\delta -y}{\int } }\left[ P_{1}\left( t,s\right) +P_{2}\left( t\right) +P_{3}\left( s\right) +H_{\lambda }\left( x_{0}-x+\delta ,y_{0}-\delta -y\right) \right] \\&\times \left\{ \mu _{1}\left( t-x_{0}+x\right) \right\} _{t}^{\prime }\left\{ \mu _{2}\left( y_{0}-s-y\right) \right\} _{s}^{\prime }{\text{d}}s{\text{d}}t \\=\, & {} \varepsilon \left( i_{1}+i_{2}+i_{3}+i_{4}\right) . \end{aligned}$$
Using Remark 1 and condition (d) of class \(A_{\varphi },\) we get
$$\begin{aligned} i_{1}+i_{2}+i_{3}+i_{4}= & {} -\overset{x_{0}+\delta -x}{\underset{x_{0}-x}{ \int }}\overset{0}{\underset{y_{0}-\delta -y}{\int }}K_{\lambda }\left( \sqrt{t^{2}+s^{2}}\right) \left\{ \mu _{1}\left( t+x-x_{0}\right) \right\} _{t}^{\prime }\left\{ \mu _{2}\left( y_{0}-s-y\right) \right\} _{s}^{\prime }\mathrm{d}s\,\mathrm{d}t \\&+\overset{x_{0}+\delta -x}{\underset{x_{0}-x}{\int }}\overset{y_{0}-y}{ \underset{0}{\int }}\left( K_{\lambda }\left( \sqrt{t^{2}+s^{2}}\right) -2K_{\lambda }\left( \left| t\right| \right) \right) \left\{ \mu _{1}\left( t+x-x_{0}\right) \right\} _{t}^{\prime } \\&\times \left\{ \mu _{2}\left( y_{0}-s-y\right) \right\} _{s}^{\prime }\mathrm{d}s\,\mathrm{d}t. \end{aligned}$$
Hence, the following inequality holds for \(I_{121}\) (for the similar situation, see [20, 23]):
$$\begin{aligned} \left| I_{121}\right|&\le \varepsilon \overset{x_{0}+\delta }{ \underset{x_{0}}{\int }}\overset{y_{0}}{\underset{y_{0}-\delta }{\int }} K_{\lambda }\left( \sqrt{(t-x)^{2}+(s-y)^{2}}\right) \rho _{1}\left( t-x_{0}\right) \rho _{2}\left( \left| y_{0}-s\right| \right) \mathrm{d}s\,\mathrm{d}t \\&\quad+2\varepsilon \mu _{2}\left( \left| y_{0}-y\right| \right) \overset{x_{0}+\delta }{\underset{x_{0}}{\int }}K_{\lambda }\left( \left| t-x\right| \right) \rho _{1}\left( t-x_{0}\right) \mathrm{d}t. \end{aligned}$$
Analogous computations for \(I_{122},\)
\(I_{123}\), and \(I_{124}\) give us
$$\begin{aligned} \left| I_{122}\right|\le & {} \varepsilon \overset{x_{0}}{\underset{ x_{0}-\delta }{\int }}\overset{y_{0}}{\underset{y_{0}-\delta }{\int }} K_{\lambda }\left( \sqrt{(t-x)^{2}+(s-y)^{2}}\right) \rho _{1}\left( x_{0}-t\right) \rho _{2}\left( y_{0}-s\right) \mathrm{d}s\,\mathrm{d}t \\&+2\varepsilon \mu _{2}\left( \left| y_{0}-y\right| \right) \overset{x_{0}}{\underset{x_{0}-\delta }{\int }}K_{\lambda }\left( \left| t-x\right| \right) \rho _{1}\left( x_{0}-t\right) \mathrm{d}t \\&+\,2\varepsilon \mu _{1}\left( \left| x_{0}-x\right| \right) \overset{y_{0}}{\underset{y_{0}-\delta }{\int }}K_{\lambda }\left( \left| s-y\right| \right) \rho _{2}\left( y_{0}-s\right) \mathrm{d}s \\&+4\varepsilon K_{\lambda }\left( 0\right) \mu _{1}\left( \left| x_{0}-x\right| \right) \mu _{2}\left( \left| y_{0}-y\right| \right) , \end{aligned}$$
$$\begin{aligned} \left| I_{123}\right|\le & {} \varepsilon \overset{x_{0}}{\underset{ x_{0}-\delta }{\int }}\overset{y_{0}+\delta }{\underset{y_{0}}{\int }} K_{\lambda }\left( \sqrt{(t-x)^{2}+(s-y)^{2}}\right) \rho _{1}\left( x_{0}-t\right) \rho _{2}\left( s-y_{0}\right) \mathrm{d}s\,\mathrm{d}t \\&+\,2\varepsilon \mu _{1}\left( \left| x_{0}-x\right| \right) \overset{y_{0}+\delta }{\underset{y_{0}}{\int }}K_{\lambda }\left( \left| s-y\right| \right) \rho _{2}\left( s-y_{0}\right) \mathrm{d}s, \\ \left| I_{124}\right|\le & {} \varepsilon \overset{x_{0}+\delta }{ \underset{x_{0}}{\int }}\overset{y_{0}+\delta }{\underset{y_{0}}{\int }} K_{\lambda }\left( \sqrt{(t-x)^{2}+(s-y)^{2}}\right) \rho _{1}\left( t-x_{0}\right) \rho _{2}\left( s-y_{0}\right) \mathrm{d}s\,\mathrm{d}t. \end{aligned}$$
Hence, the following inequality is obtained for \(I_{12}{:}\)
$$\begin{aligned} \left| I_{12}\right|\le & {} \varepsilon \underset{(t,s)\in B_{\delta }}{\sup }\varphi (t,s)\left\{ \overset{x_{0}+\delta }{\underset{ x_{0}-\delta }{\int }}\overset{y_{0}+\delta }{\underset{y_{0}-\delta }{\int } }K_{\lambda }\left( \sqrt{(t-x)^{2}+(s-y)^{2}}\right) \rho _{1}\left( \left| x_{0}-t\right| \right) \rho _{2}\left( \left| y_{0}-s\right| \right) \mathrm{d}s\,\mathrm{d}t\right. \\&+\,2\mu _{2}\left( \left| y_{0}-y\right| \right) \overset{ x_{0}+\delta }{\underset{x_{0}-\delta }{\int }}K_{\lambda }\left( \left| t-x\right| \right) \rho _{1}\left( \left| x_{0}-t\right| \right) \mathrm{d}t \\&+\,2\mu _{1}\left( \left| x_{0}-x\right| \right) \overset{ y_{0}+\delta }{\underset{y_{0}-\delta }{\int }}K_{\lambda }\left( \left| s-y\right| \right) \rho _{2}\left( \left| y_{0}-s\right| \right) \mathrm{d}s \\&\left. +\,4K_{\lambda }\left( 0\right) \mu _{1}\left( \left| x_{0}-x\right| \right) \mu _{2}\left( \left| y_{0}-y\right| \right) \right\}. \end{aligned}$$
In addition, the last inequality is obtained for other cases of the assumptions \(\left| x_{0}-x\right| <\frac{\delta }{2}\) and \(\left| y_{0}-y\right| <\frac{\delta }{2}.\) The remaining part of the proof is obvious by the hypotheses. Thus, the proof is completed. \(\square\)