Skip to main content

Advertisement

Log in

Effect of various nanoparticle biodiesel blends on thermal efficiency and exhaust pollutants

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

The transport sector produces one-third of the world’s greenhouse gasses. World consumption of nonrenewable energy through vehicles increases the interest in studies of different nanoparticle biodiesel blend behavior in a diesel engine. In this research, a comprehensive approach is taken using a wide variety of appraised nanoparticles to make blends. The CI diesel engine's engine performance and emission characteristics are studied with Malaysian commercial fuel using various nanoparticles (TiO2, Al2O3, CuO, CeO2, CNT, and GNP) blend to discover the best one. 100 ppm of each nanoparticle is used to make a blend via the ultrasonic technique. Mechanical and emission performance is tested in diesel engines (Yanmar TF 120 M) with 100% engine load at variable engine speed (2100-900 rpm). Graphical presentation and comparison of each fuel blend are discussed in this paper. All the ternary blends have shown improved engine performance. Al2O3 has shown a 3.68% reduction in BSFC when compared to neat B10. The average highest BTE recorded is a 14.59% increase when the B10 + TiO2 blend is used, followed by CNT and CeO2. Al2O3 has shown a 21.84% and 86.20% reduction in CO and HC when compared to B10, while CNT and GNP have shown a 6.03% and 2.06% of reduction in NOx emission when compared with B10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ASTM:

American Standard for Testing Materials

UN:

United Nations

DI:

Direct injection

CI:

Compression ignition

B10:

10% Biodiesel + 90% diesel

ppm:

Parts per million

Mr:

Molar mass

CNT:

Carbon nanotubes

TiO2 :

Titanium dioxide

Al2O3 :

Aluminum oxide

CuO:

Copper oxide

CeO2 :

Caesium oxide

GNP:

Graphene nanoparticles

BP:

Brake power

BT:

Brake torque

BTE:

Brake thermal efficiency

BSFC:

Brake-specific fuel consumption

CO:

Carbon monoxide

CO2 :

Carbon dioxide

HC:

Hydrocarbons

References

  1. Eia, U.: Annual energy outlook 2015: with projections to 2040. DOE/EIA-0383 (2017)

  2. REN21: Renewables 2016: global status report; REN21. In: Secretariat Paris (2016)

  3. Nations, U.: The sustainable development goals report 2019 (2019). https://doi.org/10.18356/55eb9109-en

  4. Uusitalo, V., Leino, M., Kasurinen, H., Linnanen, L.: Transportation biofuel efficiencies from cultivated feedstock in the boreal climate zone: case Finland. Biomass Bioenerg. 99, 79–89 (2017). https://doi.org/10.1016/j.biombioe.2017.02.017

    Article  Google Scholar 

  5. Kalam, M.A., Masjuki, H.H.: Biodiesel from palmoil—an analysis of its properties and potential. Biomass Bioenerg. 23(6), 471–479 (2002). https://doi.org/10.1016/S0961-9534(02)00085-5

    Article  Google Scholar 

  6. Ong, H.C., Masjuki, H.H., Mahlia, T.M.I., Silitonga, A.S., Chong, W.T., Yusaf, T.: Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 69, 427–445 (2014). https://doi.org/10.1016/j.energy.2014.03.035

    Article  Google Scholar 

  7. Silitonga, A.S., Shamsuddin, A.H., Mahlia, T.M.I., Milano, J., Kusumo, F., Siswantoro, J., Dharma, S., Sebayang, A.H., Masjuki, H.H., Ong, H.C.: Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renew Energy 146, 1278–1291 (2020). https://doi.org/10.1016/j.renene.2019.07.065

    Article  Google Scholar 

  8. Rizwanul Fattah, I.M., Masjuki, H.H., Kalam, M.A., Wakil, M.A., Ashraful, A.M., Shahir, S.A.: Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors. Energy Convers. Manage. 83, 232–240 (2014). https://doi.org/10.1016/j.enconman.2014.03.069

    Article  Google Scholar 

  9. Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Ong, H.C., Chong, W.T., Boosroh, M.H.: Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 22, 346–360 (2013). https://doi.org/10.1016/j.rser.2013.01.055

    Article  Google Scholar 

  10. Yusoff, M.N.A.M., Zulkifli, N.W.M., Sukiman, N.L., Chyuan, O.H., Hassan, M.H., Hasnul, M.H., Zulkifli, M.S.A., Abbas, M.M., Zakaria, M.Z.: Sustainability of Palm biodiesel in transportation: a review on biofuel standard, policy and international collaboration between Malaysia and Colombia. BioEnergy Research 14(1), 43–60 (2021). https://doi.org/10.1007/s12155-020-10165-0

    Article  Google Scholar 

  11. Elisha O, Fauzi A, Anggraini E. Analysis of production and consumption of palm-oil based biofuel using system dynamics model: case of Indonesia. Int. J. Sci. Res. Sci., Eng. Technol. (2019). https://doi.org/10.32628/IJSRSET1962149

  12. Yusof, S.N.A., Sidik, N.A.C., Asako, Y., Japar, W.M.A.A., Mohamed, S.B., Muhammad, N.M.A.: A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE). Nanotechnol. Rev. 9(1), 1326–1349 (2020). https://doi.org/10.1515/ntrev-2020-0104

    Article  Google Scholar 

  13. Basha, D.J.S.: An experimental analysis of a diesel engine using alumina nanoparticles blended diesel fuel. In: SAE World Congress 2014, SAE Technical Paper 2014-01-1391 (2014). https://doi.org/10.4271/2014-01-1391

  14. Mujtaba, M.A., Kalam, M.A., Masjuki, H.H., Gul, M., Soudagar, M.E.M., Ong, H.C., Ahmed, W., Atabani, A.E., Razzaq, L., Yusoff, M.: Comparative study of nanoparticles and alcoholic fuel additives-biodiesel-diesel blend for performance and emission improvements. Fuel 279, 118434 (2020). https://doi.org/10.1016/j.fuel.2020.118434

    Article  Google Scholar 

  15. Khan, H., Soudagar, M.E., Kumar, R., Safaei, M.R., Farooq, M., Khidmatgar, A., Banapurmath, N., Farade, R., Abbas, M., Afzal, A., et al.: Effect of nano-graphene oxide and n-butanol fuel additives blended with diesel-nigella sativa biodiesel fuel emulsion on diesel engine characteristics. Symmetry 12, 961 (2020). https://doi.org/10.3390/sym12060961

    Article  Google Scholar 

  16. Sathiyamoorthi, R., Sankaranarayanan, G., Pitchandi, K.: Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine. Appl. Therm. Eng. 112, 1421–1432 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.179

    Article  Google Scholar 

  17. Sajith, V., Sobhan, C.B., Peterson, G.P.: Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel. Adv. Mech. Eng. 2, 581407 (2010). https://doi.org/10.1155/2010/581407

    Article  Google Scholar 

  18. Janakiraman, S., Lakshmanan, T., Chandran, V., Subramani, L.: Comparative behavior of various nano additives in a DIESEL engine powered by novel Garcinia gummi-gutta biodiesel. J. Clean. Product. 245, 118940 (2020). https://doi.org/10.1016/j.jclepro.2019.118940

    Article  Google Scholar 

  19. Sathiamurthi, P., Vinith, K.S.K., Sivakumar, A.: Performance and emission test in CI engine using magnetic fuel conditioning with nano additives. In: 2019; of Conference: (Year). https://doi.org/10.35940/ijrte.C6213.098319

  20. Gumus, S., Özcan, H., Ozbey, M., Topaloglu, B.: Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel 163, 80–87 (2016). https://doi.org/10.1016/j.fuel.2015.09.048

    Article  Google Scholar 

  21. Chen, A.F., Akmal Adzmi, M., Adam, A., Othman, M.F., Kamaruzzaman, M.K., Mrwan, A.G.: Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy Convers. Manage. 171, 461–477 (2018). https://doi.org/10.1016/j.enconman.2018.06.004

    Article  Google Scholar 

  22. Kumar, A.R.M., Kannan, M., Nataraj, G.: A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel. Renew. Energy 146, 1781–1795 (2020). https://doi.org/10.1016/j.renene.2019.06.168

    Article  Google Scholar 

  23. Sandeep, K., Rajashekhar, C.R., Karthik, S.R.: Experimental studies on effect of nano particle blended biodiesel combustion on performance and emission of CI engine. IOP Confer. Ser.: Mater. Sci. Eng. 376, 012019 (2018). https://doi.org/10.1088/1757-899x/376/1/012019

    Article  Google Scholar 

  24. Power, A.C., Gorey, B., Chandra, S., Chapman, J.: Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol. Rev. 7(1), 19–41 (2018). https://doi.org/10.1515/ntrev-2017-0160

    Article  Google Scholar 

  25. Baskar, P., Senthilkumar, A.: Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine. Eng. Sci. Technol., Int. J. 19(1), 438–443 (2016). https://doi.org/10.1016/j.jestch.2015.08.011

    Article  Google Scholar 

  26. Najafi, G.: Diesel engine combustion characteristics using nano-particles in biodiesel-diesel blends. Fuel 212, 668–678 (2017). https://doi.org/10.1016/j.fuel.2017.10.001

    Article  Google Scholar 

  27. Speight, J.G.: Chapter 10—combustion of hydrocarbons. In: Speight, J.G. (ed.) Handbook of Industrial Hydrocarbon Processes, 2nd edn., pp. 421–463. Gulf Professional Publishing, Boston (2020). https://doi.org/10.1016/B978-0-12-809923-0.00010-2

    Chapter  Google Scholar 

  28. Fattah, I.M.R., Ong, H.C., Mahlia, T.M.I., Mofijur, M., Silitonga, A.S., Rahman, S.M.A., Ahmad, A.: State of the art of catalysts for biodiesel production. Front. Energy Res. 8, 101 (2020). https://doi.org/10.3389/fenrg.2020.00101

    Article  Google Scholar 

  29. Buksagarmath, P., Rajashekar, C.R.: Studies on effect of various surfactants on stable dispersion of graphene nano particles in simarouba biodiesel. IOP Confer. Ser.: Mater. Sci. Eng. 149, 012083 (2016). https://doi.org/10.1088/1757-899X/149/1/012083

    Article  Google Scholar 

  30. Thanu, D.P.R., Zhao, M., Han, Z., Keswani, M.: Chapter 1—fundamentals and applications of sonic technology. In: Kohli, R., Mittal, K.L. (eds.) Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques, pp. 1–48. Elsevier (2019). https://doi.org/10.1016/B978-0-12-815577-6.00001-3

    Chapter  Google Scholar 

  31. Proctor, C.L.: Internal combustion engines. In: Meyers, R.A. (ed.) Encyclopedia of Physical Science and Technology, 3rd edn., pp. 33–44. Academic Press, New York (2003). https://doi.org/10.1016/B0-12-227410-5/00350-1

    Chapter  Google Scholar 

  32. Chang, S.-L., Zhou, C.Q.: Combustion and thermochemistry. In: Cleveland, C.J. (ed.) Encyclopedia of Energy, pp. 595–603. Elsevier, New York (2004). https://doi.org/10.1016/B0-12-176480-X/00087-5

    Chapter  Google Scholar 

  33. Hosseini, S.H., Taghizadeh-Alisaraei, A., Ghobadian, B., Abbaszadeh-Mayvan, A.: Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine. Energy 124, 543–552 (2017). https://doi.org/10.1016/j.energy.2017.02.109

    Article  Google Scholar 

  34. Khalife, E., Tabatabaei, M., Demirbas, A., Aghbashlo, M.: Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog. Energy Combust. Sci. 59, 32–78 (2017). https://doi.org/10.1016/j.pecs.2016.10.001

    Article  Google Scholar 

  35. Murcak, A., Haşimoğlu, C., Çevik, İ, Karabektaş, M., Ergen, G.: Effects of ethanol–diesel blends to performance of a DI diesel engine for different injection timings. Fuel 109, 582–587 (2013). https://doi.org/10.1016/j.fuel.2013.03.014

    Article  Google Scholar 

  36. Saxena, V., Kumar, N., Saxena, V.K.: A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine. Renew. Sustain. Energy Rev. 70, 563–588 (2017). https://doi.org/10.1016/j.rser.2016.11.067

    Article  Google Scholar 

  37. Najafi, G.: Diesel engine combustion characteristics using nano-particles in biodiesel-diesel blends. Fuel 212, 668–678 (2018). https://doi.org/10.1016/j.fuel.2017.10.001

    Article  Google Scholar 

  38. Le Anh, T., Reksowardojo, I.K., Wattanavichien, K.: 23—utilization of biofuels in diesel engines. In: Luque, R., Lin, C.S.K., Wilson, K., Clark, J. (eds.) Handbook of Biofuels Production, 2nd edn., pp. 699–733. Woodhead Publishing (2016). https://doi.org/10.1016/B978-0-08-100455-5.00023-0

    Chapter  Google Scholar 

  39. Manchon, A., Belabbes, A.: Chapter One—spin-orbitronics at transition metal interfaces. In: Camley, R.E., Stamps, R.L. (eds.) Solid State Physics, vol. 68, pp. 1–89. Academic Press (2017). https://doi.org/10.1016/bs.ssp.2017.07.001

    Chapter  Google Scholar 

  40. Stork, C., Anguish, D.: Carbon monoxide. In: Wexler, P. (ed.) Encyclopedia of Toxicology, 2nd edn., pp. 423–425. Elsevier (2005). https://doi.org/10.1016/B0-12-369400-0/00184-8

    Chapter  Google Scholar 

  41. Habibullah, M., Masjuki, H.H., Kalam, M.A., Rizwanul Fattah, I.M., Ashraful, A.M., Mobarak, H.M.: Biodiesel production and performance evaluation of coconut, palm and their combined blend with diesel in a single-cylinder diesel engine. Energy Convers. Manage. 87, 250–257 (2014). https://doi.org/10.1016/j.enconman.2014.07.006

    Article  Google Scholar 

  42. Sankaralingam, M., Lee, Y.-M., Nam, W., Fukuzumi, S.: Amphoteric reactivity of metal–oxygen complexes in oxidation reactions. Coord. Chem. Rev. 365, 41–59 (2018). https://doi.org/10.1016/j.ccr.2018.03.003

    Article  Google Scholar 

  43. Sher, E.: Chapter 2—environmental aspects of air pollution. In: Sher, E. (ed.) Handbook of Air Pollution From Internal Combustion Engines, pp. 27–41. Academic Press, San Diego (1998). https://doi.org/10.1016/B978-012639855-7/50041-7

    Chapter  Google Scholar 

  44. Jacobs, D.E.: Housing-related health hazards: assessment and remediation. In: Nriagu, J.O. (ed.) Encyclopedia of Environmental Health, pp. 76–94. Elsevier, Burlington (2011). https://doi.org/10.1016/B978-0-444-52272-6.00351-2

    Chapter  Google Scholar 

  45. Ghanbari, M., Najafi, G., Ghobadian, B., Yusaf, T., Carlucci, A.P., Kiani Deh Kiani, M.: Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. Fuel 202, 699–716 (2017). https://doi.org/10.1016/j.fuel.2017.04.117

    Article  Google Scholar 

  46. Fattah, I.M.R., Masjuki, H.H., Kalam, M.A., Wakil, M.A., Ashraful, A.M., Shahir, S.A.: Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors. Energy Convers. Manage. 83, 232–240 (2014). https://doi.org/10.1016/j.enconman.2014.03.069

    Article  Google Scholar 

  47. Fattah, I.M.R., Masjuki, H.H., Kalam, M.A., Mofijur, M., Abedin, M.J.: Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Convers. Manage. 79, 265–272 (2014). https://doi.org/10.1016/j.enconman.2013.12.024

    Article  Google Scholar 

  48. Thurston, G.D.: Outdoor Air Pollution: Sources, Atmospheric Transport, and Human Health Effects. In: Quah, S.R. (ed.) International Encyclopedia of Public Health, 2nd edn., pp. 367–377. Academic Press, Oxford (2017). https://doi.org/10.1016/B978-0-12-803678-5.00320-9

    Chapter  Google Scholar 

  49. Örs, I., Sarıkoç, S., Atabani, A.E., Ünalan, S., Akansu, S.O.: The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel 234, 177–188 (2018). https://doi.org/10.1016/j.fuel.2018.07.024

    Article  Google Scholar 

  50. Gad, M.S., Jayaraj, S.: A comparative study on the effect of nano-additives on the performance and emissions of a diesel engine run on Jatropha biodiesel. Fuel 267, 117168 (2020). https://doi.org/10.1016/j.fuel.2020.117168

    Article  Google Scholar 

  51. Semakula, M., Inambao, P.F.: The formation, effects and control of oxides of nitrogen in diesel engines. In: 2018; of Conference: (Year). Corpus ID: 236566453

  52. Mei, D., Zuo, L., Adu-Mensah, D., Li, X., Yuan, Y.: Combustion characteristics and emissions of a common rail diesel engine using nanoparticle-diesel blends with carbon nanotube and molybdenum trioxide. Appl. Therm. Eng. 162, 114238 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114238

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Malaya and the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme FP142-2019A-(FRGS/1/2019/TK03/UM/01/1). On behalf of all authors, the corresponding author states that this research has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahab Imran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 215 kb)

Appendix

Appendix

Uncertainty of the result when the engine is running at different speeds at full load using B10 (commercial diesel).

Uncertainty for BT(Nm) when using B10

Engine speed (rpm)

Three test runs

Min–Max value

Accuracy of the system ± 0.2 Nm

Average value

Percentage uncertainty (%)

Test 1

Test 2

Test 3

Min

Max

Min – 0.2

Max + 0.2

Min

Max

+

2100

31.18386

31.18386

31.18386

31.18386

31.18386

30.98386

31.38386

31.18386

0.641357

0.641357

1800

32.4041

31.99735

32.26852

31.99735

32.4041

31.79735

32.6041

32.22332

1.252683

1.252683

1500

32.26852

32.13293

32.13293

32.13293

32.26852

31.93293

32.46852

32.17813

0.83163

0.83163

1200

31.99735

31.99735

31.99735

31.99735

31.99735

31.79735

32.19735

31.99735

0.625052

0.625052

900

30.37037

30.50595

30.50595

30.37037

30.50595

30.17037

30.70595

30.46076

0.879787

0.879787

Percentage uncertainty in the value of BT

0.846102%

0.846102%

Other Percentage uncertainties of different values when using B10:

Percentage uncertainty in the value of BSFC

1.6128%

1.6129%

Percentage uncertainty in the value of BTE

1.8345%

1.8346%

Percentage uncertainty in the value of CO2 emission

0.71%

0.71%

Percentage uncertainty in the value of CO emission

0.83%

0.83%

Percentage uncertainty in the value of HC emission

0.83%

0.83%

Percentage uncertainty in the value of NOx emission

1.14%

1.14%

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, S., Gul, M., Kalam, M.A. et al. Effect of various nanoparticle biodiesel blends on thermal efficiency and exhaust pollutants. Int J Energy Environ Eng 14, 937–948 (2023). https://doi.org/10.1007/s40095-023-00557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-023-00557-1

Keywords

Navigation