Skip to main content

Advertisement

Log in

High efficient solar cells through multi-layer thickness optimization using particle swarm optimization and simulated annealing

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

In a comparative study, a solar cell structure’s layer thicknesses were optimized using particle swarm optimization (PSO) and simulated annealing (SA). The ideal short-circuit current density was considered as the cost function for both algorithms to minimize the number of function evaluations (NFEs) needed to obtain the optimal thicknesses of the structure layers (ZnO and MoOx layers), separately and simultaneously, being single- and multi-layer optimization. The results were compared to those of genetic algorithm (GA) and brute-force methods that have been reported in the literature. In the single-layer optimization, the results obtained by PSO indicated that the maximum required NFEs for optimizing ZnO was 33.1 ± 23.16 compared to 81 for the brute-force method and 78.16 ± 1.65 for the GA. The PSO method needed 19.6 ± 11.7 NFEs for optimizing the MoOx layer, while, as was reported in Ref. Vincent (E 13:1726 2020), GA optimized this layer by 13.05 ± 3.24 in the best manner by the Roulette wheel method. Both single-based and population-based approaches were implemented for the SA. The results obtained by SA indicated that the required NFEs were estimated higher than that of the GA due to the small search space. The required NFEs for two-layer optimization using PSO amount to 111.27 ± 60.1, which is considerably lower than the 1758.77 ± 39.75 of GA. The NFEs are significantly lower than the similar value obtained using the brute-force approach and GA, even with the highest SD value. In the case of two-layer optimization, SA estimated 65.63 ± 21.1 and 575.76 ± 301.64 NFEs using single-based and population-based methods, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, G., Li, M., Taylor, R., Hao, Y., Besagni, G., Markides, C.N.: Solar energy utilisation: current status and roll-out potential. Appl. Therm. Eng. (2022). https://doi.org/10.1016/j.applthermaleng.2022.118285

    Article  Google Scholar 

  2. Korfiati, A., Gkonos, C., Veronesi, F., Gaki, A., Grassi, S., Schenkel, R., Volkwein, S., Raubal, M., Hurni, L.: Estimation of the global solar energy potential and photovoltaic cost with the use of open data. Int. J. Sustain. Energy Plan. Manag. 9, 17–29 (2016). https://doi.org/10.5278/ijsepm.2016.9.3

    Article  Google Scholar 

  3. Güney, T.: Solar energy and sustainable development: evidence from 35 countries. Int. J. Sustain. Dev. World Ecol. 29, 187–194 (2022). https://doi.org/10.1080/13504509.2021.1986749

    Article  Google Scholar 

  4. Kannan, N., Vakeesan, D.: Solar energy for future world: - a review. Renew. Sustain. Energy Rev. 62, 1092–1105 (2016). https://doi.org/10.1016/J.RSER.2016.05.022

    Article  Google Scholar 

  5. Milichko, V.A., Shalin, A.S., Mukhin, I.S., Kovrov, A.E., Krasilin, A.A., Vinogradov, A.V., Belov, P.A., Simovski, C.R.: Solar photovoltaics: current state and trends. Phys. Usp. 59, 727–772 (2016). https://doi.org/10.3367/UFNE.2016.02.037703/XML

    Article  Google Scholar 

  6. King, R.R., Karam, N.H., Ermer, J.H., Haddad, M., Colter, P., Isshiki, T., Yoon, H., Cotal, H.L., Joslin, D.E., Krut, D.D., Sudharsanan, R., Edmondson, K., Cavicchi, B.T., Lillington, D.R.: Next-generation, high-efficiency III-V multijunction solar cells. Conf. Rec. IEEE Photovolt. Spec. Conf. (2000). https://doi.org/10.1109/PVSC.2000.916054

    Article  Google Scholar 

  7. Pakhanov, N.A., Andreev, V.M., Shvarts, M.Z., Pchelyakov, O.P.: State-of-the-art architectures and technologies of high-efficiency solar cells based on III–V heterostructures for space and terrestrial applications. Optoelectron. Instrum. Data Process. 54, 187–202 (2018). https://doi.org/10.3103/S8756699018020115

    Article  Google Scholar 

  8. Yamaguchi, M.: Japanese R and D activities of high efficiency III-V compound multi-junction and concentrator solar cells. Energy Procedia. 15, 265–274 (2012). https://doi.org/10.1016/J.EGYPRO.2012.02.031

    Article  Google Scholar 

  9. Miller, B., Ranum, D.: Problem-solving with algorithms and data structures release 3.0, Franklin, Beedle & Associates (2013)

  10. DIab, A.A.Z., Sultan, H.M., Do, T.D., Kamel, O.M., Mossa, M.A.: Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules. IEEE Access 8, 111102–111140 (2020). https://doi.org/10.1109/ACCESS.2020.3000770

    Article  Google Scholar 

  11. Farah, A., Belazi, A., Benabdallah, F., Almalaq, A., Chtourou, M., Abido, M.A.: Parameter extraction of photovoltaic models using a comprehensive learning Rao-1 algorithm. Energy Convers. Manag. 252, 115057 (2022). https://doi.org/10.1016/J.ENCONMAN.2021.115057

    Article  Google Scholar 

  12. Kharchouf, Y., Herbazi, R., Chahboun, A.: Parameter’s extraction of solar photovoltaic models using an improved differential evolution algorithm. Energy Convers. Manag. 251, 114972 (2022). https://doi.org/10.1016/J.ENCONMAN.2021.114972

    Article  Google Scholar 

  13. Hemeida, A.M., Omer, A.S., Bahaa-Eldin, A.M., Alkhalaf, S., Ahmed, M., Senjyu, T., El-Saady, G.: Multi-objective multi-verse optimization of renewable energy sources-based micro-grid system: real case. Ain Shams Eng. J. 13, 101543 (2022). https://doi.org/10.1016/J.ASEJ.2021.06.028

    Article  Google Scholar 

  14. Alavi, M., Yoo, Y., Vogel, D.R.: Using information technology to add value to management education. Acad. Manag. J. 40, 1310–1333 (2017). https://doi.org/10.5465/257035

    Article  Google Scholar 

  15. Ardito, C., Costabile, M.F., De Marsico, M., Lanzilotti, R., Levialdi, S., Roselli, T., Rossano, V.: An approach to usability evaluation of e-learning applications. Univers. Access Inf. Soc. 43, 270–283 (2005). https://doi.org/10.1007/S10209-005-0008-6

    Article  Google Scholar 

  16. Boehner, K., DePaula, R., Dourish, P., Sengers, P.: How emotion is made and measured. Int. J. Hum. Comput. Stud. 65, 275–291 (2007). https://doi.org/10.1016/J.IJHCS.2006.11.016

    Article  Google Scholar 

  17. Meer, K.: Simulated annealing versus metropolis for a TSP instance. Inf. Process. Lett. 104, 216–219 (2007). https://doi.org/10.1016/J.IPL.2007.06.016

    Article  MathSciNet  MATH  Google Scholar 

  18. Niknam, T.: An approach based on particle swarm optimization for optimal operation of distribution network considering distributed generators. IECON Proc. Indus. Elect. Conf. (2006). https://doi.org/10.1109/IECON.2006.347222

    Article  Google Scholar 

  19. Niknam, T., Firouzi, B.B., Nayeripour, M.: An efficient hybrid evolutionary algorithm for cluster analysis. World Appl. Sci. J. 4(2), 300–307 (2008)

    Google Scholar 

  20. Rajan, C.C.A., Mohan, M.R.: An evolutionary programming based simulated annealing method for solving the unit commitment problem. Int. J. Electr. Power Energy Syst. 29, 540–550 (2007). https://doi.org/10.1016/J.IJEPES.2006.12.001

    Article  Google Scholar 

  21. Saber, A.Y., Senjyu, T., Yona, A., Urasaki, N., Funabashi, T.: Fuzzy unit commitment solution—A novel twofold simulated annealing approach. Electr. Power Syst. Res. 77, 1699–1712 (2007). https://doi.org/10.1016/J.EPSR.2006.12.002

    Article  Google Scholar 

  22. Vincent, P., Sergio, G.C., Jang, J., Kang, I.M., Park, J., Kim, H., Lee, M., Bae, J.H.: Application of genetic algorithm for more efficient multi-layer thickness optimization in solar cells. Energies 13, 1726 (2020). https://doi.org/10.3390/EN13071726

    Article  Google Scholar 

  23. Anabestani, H.: Investigation on performance enhancement of micro-sized IR photodetectors, UWSpace. http://hdl.handle.net/10012/17406 (2021)

  24. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. ICNN’95 Int. Conf. Neural Netw. 4, 1942–1948 (1942). https://doi.org/10.1109/ICNN.1995.488968

    Article  Google Scholar 

  25. Kennedy, J.F., Eberhart, R.C., Shi, Y.: Swarm intelligence, vol. 512. Morgan Kaufmann Publishers, San Francisco (2001)

  26. Niknam, T., Amiri, B., Olamaei, J., Arefi, A.: An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. J. Zhejiang Univ. A 10, 512–519 (2009). https://doi.org/10.1631/JZUS.A0820196

    Article  MATH  Google Scholar 

  27. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 80(220), 671–680 (1983). https://doi.org/10.1126/SCIENCE.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  28. Rutenbar, R.A.: Simulated annealing algorithms: an overview. IEEE Circuits Devices Mag. 5, 19–26 (1989). https://doi.org/10.1109/101.17235

    Article  Google Scholar 

  29. Siddique, N., Adeli, H.: Simulated annealing its variants and engineering applications. Inte. J. Artif. Intell. Tools (2016). https://doi.org/10.1142/S0218213016300015

    Article  Google Scholar 

Download references

Acknowledgements

The support from Shahid Beheshti University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Alahyarizadeh.

Ethics declarations

Conflict of interest

There is NO Competing Interest. The authors declare no competing financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargaran, H., Bayat, E., Hassanzadeh, A. et al. High efficient solar cells through multi-layer thickness optimization using particle swarm optimization and simulated annealing. Int J Energy Environ Eng 14, 661–670 (2023). https://doi.org/10.1007/s40095-022-00541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00541-1

Keywords

Navigation