Skip to main content

Advertisement

Log in

Improving the initialization of a stochastic AC-QP optimal power flow algorithm

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

As the penetration of renewable generation in electricity networks increases, so does the challenge of maintaining the reliability of those networks. This work utilizes a scenario-based approach to solving a stochastic AC optimal power flow (OPF) problem. In addition to producing an optimal operating point, this method offers a-posteriori theoretical guarantees on the probability of violation for any arbitrary wind scenario that may be encountered in real-time operation. This work expands upon prior formulations by proposing six methods of initializing the stochastic AC-QP OPF algorithm. Results are presented for both the IEEE 14-bus and 3012wp networks; each network was augmented with two wind nodes. The performance of all initialization methods is assessed with regard to the total number of support scenarios, total execution time, and cost of operation. Each is shown to outperform a random initialization process. Trade-offs among these methods with respect to computational complexity and efficacy are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wood, A.J., Wollenberg, B.F., Sheble, G.B.: Power Gener. Oper. Control, 3rd edn. John Wiley and Sons Inc, New Jersey (2013)

    Google Scholar 

  2. Motto, A., Galiana, F., Conejo, A., Arroyo, J.: Network-constrained multiperiod auction for a pool-based electricity market. IEEE Trans. Power Sys. 17(3), 646–653 (2002). https://doi.org/10.1109/TPWRS.2002.800909

    Article  Google Scholar 

  3. Overbye, T., Cheng, X., Sun, Y.: A comparison of the AC and DC power flow model for LMP calculations. In: 37th Hawaii international conference on system sciences (HICSS) (2006). https://doi.org/10.1109/HICSS.2004.1265164

  4. Stott, B., Jardim, J., Alsac, O.: DC power flow revisited. IEEE Trans. Power Sys. 24(3), 1290–1300 (2009). https://doi.org/10.1109/TPWRS.2009.2021235

    Article  Google Scholar 

  5. Molzahn, D.K., Holzer, J.T., Lesieutre, B.C., DeMarco, C.L.: Implementation of a large-scale optimal power flow solver based on semidefinite programming. IEEE Trans. Power Syst. 28(4), 3987–3998 (2013). https://doi.org/10.1109/TPWRS.2013.2258044

    Article  Google Scholar 

  6. Low, S.H.: Convex relaxation of optimal power flow: parts I & II. IEEE Trans. Control Netw. Syst. 1(1), 15–27 (2014). https://doi.org/10.1109/TCNS.2014.2309732

    Article  MathSciNet  MATH  Google Scholar 

  7. Bienstock, D., Munoz, G.: On linear relaxations of OPF problems (2015). http://arxiv.org/abs/1411.1120

  8. Coffrin, C., Hijazi, H.L., Van Hentenryck, P.: The QC relaxation: theoretical and computational results on optimal power flow. IEEE Trans. Power Syst. 31(4), 3008–3018 (2016). https://doi.org/10.1109/TPWRS.2015.2463111

    Article  Google Scholar 

  9. Gan, L., Low, S.H.: Convex relaxations and linear approximation for optimal power flow in multiphase radial networks. In: 18th power system computation conference (PSCC) (2014). https://doi.org/10.1109/PSCC.2014.7038399

  10. Lesieutre, B.C., Molzahn, D.K., Borden, A.R., DeMarco, C.L.: Examining the limits of the application of semidefinite programming to power flow problems. In: 49th annual Allerton conference on communication control and computing, pp. 1492–1499 (2011). https://doi.org/10.1109/Allerton.2011.6120344

  11. Molzahn, D., Lesieutre, B., DeMarco, C.: Investigation of non-zero duality gap solutions to a semidefinite relaxation of the optimal power flow problem. In: 47th Hawaii international conference on system sciences (HICSS) (2014). https://doi.org/10.1109/HICSS.2014.293

  12. Marley, J.F., Molzahn, D.K., Hiskens, I.A.: Solving multiperiod OPF problems using an AC-QP algorithm initialized with an SOCP relaxation. IEEE Trans. Power Sys. 32(5), 3538–3548 (2017). https://doi.org/10.1109/TPWRS.2016.2636132

    Article  Google Scholar 

  13. Bienstock, D., Chertkov, M., Harnett, S.: Chance-constrained optimal power flow: risk-aware network control under uncertainty. SIAM Rev. 56(3), 461–495 (2014). https://doi.org/10.1137/130910312

    Article  MathSciNet  MATH  Google Scholar 

  14. Roald, L., Oldewurtel, F., Krause, T., Andersson, G.: Analytical reformulation of security constrained optimal power flow with probabilistic constraints. In: IEEE PowerTech Conference (2013). https://doi.org/10.1109/PTC.2013.6652224

  15. Bertsimas, D., Litvinov, E., Sun, X., Zhao, J., Zheng, T.: Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Sys. 28(1), 52–63 (2013). https://doi.org/10.1109/TPWRS.2012.2205021

    Article  Google Scholar 

  16. Vrakopoulou, M., Katsampani, M., Margellos, K., Lygeros, J., Andersson, G.: Probabilistic security-constrained AC optimal power flow. In: IEEE PowerTech Conference (2013). https://doi.org/10.1109/PTC.2013.6652374

  17. Papavasiliou, A., Oren, S., O’Neill, R.: Reserve requirements for wind power integration: a scenario-based stochastic programming framework. IEEE Trans. Power Sys. 26(4), 2197–2206 (2011). https://doi.org/10.1109/TPWRS.2011.2121095

    Article  Google Scholar 

  18. Morales, J.M., Conejo, A., Perez-Ruiz, J.: Economic valuation of reserves in power systems with high penetration of wind power. IEEE Trans. Power Sys. 24(2), 900–910 (2009). https://doi.org/10.1109/TPWRS.2009.2016598

    Article  Google Scholar 

  19. Vrakopoulou, M., Margellos, K., Lygeros, J., Andersson, G.: Probabilistic guarantees for the N-1 security of systems with wind power generation. In: Probabilistic methods applied to power systems conference (2012)

  20. Marley, J.F., Vrakopoulou, M., Hiskens, I.A.: An AC-QP optimal power flow algorithm considering wind forecast uncertainty. In: IEEE innovative smart grid technologies - Asia, pp. 317–323 (2016). https://doi.org/10.1109/ISGT-Asia.2016.7796405

  21. Campi, M.C., Garatti, S., Ramponi, F.A.: Non-convex scenario optimization with application to system identification. In: 54th IEEE conference on decision and control (2015). https://doi.org/10.1109/CDC.2015.7402845

  22. Calafore, G., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006). https://doi.org/10.1109/TAC.2006.875041

    Article  MathSciNet  MATH  Google Scholar 

  23. Alamo, T., Tempo, R., Luque, A.: On the sample complexity of randomized approaches to the analysis and design under uncertainty. In: Proceedings of the American control conference (2010). https://doi.org/10.1109/ACC.2010.5531078

  24. Yang, Y., Sutanto, C.: Chance-constrained optimization for nonconvex programs using scenario-based methods. ISA Trans. 90, 157–168 (2019). https://doi.org/10.1016/j.isatra.2019.01.013

    Article  Google Scholar 

  25. Rocchetta, R., Crespo, L., Kenny, S.: A scenario optimization approach to reliability-based design. Reliab. Eng. Sys. Saf. 196, 106755 (2020). https://doi.org/10.1016/j.ress.2019.106755

    Article  Google Scholar 

  26. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  27. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 99, 1–8 (2011). https://doi.org/10.1109/TPWRS.2010.2051168

    Article  Google Scholar 

  28. Coffrin, C.: STAC: Steady-state AC network visualization in the browser. Available at https://immersive.erc.monash.edu/stac/ (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Marley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccoli, D., Marley, J. Improving the initialization of a stochastic AC-QP optimal power flow algorithm. Int J Energy Environ Eng 14, 109–120 (2023). https://doi.org/10.1007/s40095-022-00509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00509-1

Keywords

Navigation