Skip to main content

Advertisement

Log in

Economic analysis of biomass briquettes made from coconut shells, rattan waste, banana peels and sugarcane bagasse in households cooking

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to analyse the economic viability of cooking biomass briquettes made from coconut shells, rattan waste, banana peels, and sugarcane bagasse by replacing conventional fuels such as fuelwood, charcoal and Liquefied Petroleum Gas (LPG). The life cycle cost method and the sensitivity analysis based on a 10-year lifetime are applied to a typical Cameroonian household with an annual cooking energy requirement of 950 kWh. According to the results, briquettes made from coconut shells have the lowest life cycle cost (384.6€), while those made from banana peels have the highest cost (729.6€). The fuelwood replacement has the highest present value of net benefit. Among the three conventional fuels investigated, wood charcoal is the cheapest. Changes in the price of conventional fuels and the market discount rate affect the economic feasibility of biomass briquettes. With the exception of the banana peel briquettes, briquettes are more cost-effective than fuelwood, wood charcoal and Liquefied Petroleum Gas. Decision makers should consider ways to include massive household use of biomass briquettes in sustainable development because they could be a leading mover in sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCS:

Coconut shells

PVT :

Present Value at the year T, €

RWT:

Rattan waste

d:

Discount rate, %

BNP:

Banana peels

Ed :

Energy demand, kWh

SGC:

Sugarcane bagasse

ACT :

Annual cash flow at the year T, €

IEA:

International Energy Agency

FC:

Fuel Cost, €/kwh

WHO:

World Health Organization

INV:

Initial investment cost, €

LPG:

Liquefied Petroleum Gas

i :

Fuel cost inflation rate, %

PVNB:

Present Value of Net Benefit, €

j :

Maintenance cost inflation rate,%

LCC:

Life Cycle Cost, €

PVT :

Present Value at the year T, €

LCCconv :

Life Cycle Cost of conventional fuel, €

d:

Discount rate, %

LCCbio :

Life Cycle Cost of biomass briquette, €

MC:

Maintenance cost, €

kWh:

Kilowatt-hour

kWht :

Kilowatt-hour thermal

References

  1. Halder, P.K., Paul, N., Beg, M.R.A.: Assessment of biomass energy resources and related technologies practice in Bangladesh. Renew. Sustain. Energy Rev. 39, 444–460 (2014). https://doi.org/10.1016/j.rser.2014.07.071

    Article  Google Scholar 

  2. Wirba et al, “Renewable energy potentials in Cameroon : Prospects and challenges .,” Renwable Energy, 2016.

  3. E. Atyi et al., “Étude de l’importance économique et sociale du secteur forestier et faunique au Cameroun: Rapport final,” 2013.

  4. WHO, “Indoor Air Pollution: Multiple Links between Household Energy and the MDGs,” 2011.

  5. Kpalo, S.Y., Zainuddin, M.F., Manaf, L.A., Roslan, A.M.: A review of technical and economic aspects of biomass briquetting. Sustain 12, 11 (2020). https://doi.org/10.3390/su12114609

    Article  Google Scholar 

  6. Mboumboue, E., Njomo, D.: Potential contribution of renewables to the improvement of living conditions of poor rural households in developing countries : Cameroon ’ s case study. Renew. Sustain. Energy Rev. 61, 266–279 (2016). https://doi.org/10.1016/j.rser.2016.04.003

    Article  Google Scholar 

  7. OMS, “la pollution de l’air à l’intérieur des habitations et la santé,” 2007.

  8. Bot, B.V., Gaston, J., Olivier, T., Sosso, T., Pascal, M.: Assessment of biomass briquette energy potential from agricultural residues in Cameroon. Biomass Convers Biorefinery (2022). https://doi.org/10.1007/s13399-022-02388-2

    Article  Google Scholar 

  9. McKendry, P.: Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 83(1), 37–46 (2002). https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  Google Scholar 

  10. Ngusale, G.K., Luo, Y., Kiplagat, J.K.: Briquette making in Kenya: Nairobi and peri-urban areas. Renew. Sustain. energy Rev. 40, 749–759 (2014)

    Article  Google Scholar 

  11. Bot, B.V., Sosso, O.T., Tamba, J.G., Lekane, E., Bikai, J., Ndame, M.K.: Preparation and characterization of biomass briquettes made from banana peels, sugarcane bagasse, coconut shells and rattan waste. Biomass Convers Biorefinery (2021). https://doi.org/10.1007/s13399-021-01762-w

    Article  Google Scholar 

  12. Lubwama, M., Yiga, V.A.: Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda. Renew. Energy 111, 532–542 (2017). https://doi.org/10.1016/j.renene.2017.04.041

    Article  Google Scholar 

  13. Sawadogo, M., Tanoh, S.T., Sidibé, S., Kpai, N., Tankoano, I.: Cleaner production in burkina faso: Case study of fuel briquettes made from cashew industry waste. J. Clean. Prod. 195, 1047–1056 (2018)

    Article  Google Scholar 

  14. Kauter, D., Lewandowski, I., Claupein, W.: Quantity and quality of harvestable biomass from Populus short rotation coppice for solid fuel use—a review of the physiological basis and management influences”. Biomass Bioengerg. 24, 411–427 (2003)

    Article  Google Scholar 

  15. Njenga, M., et al.: Additional cooking fuel supply and reduced global warming potential from recycling charcoal dust into charcoal briquette in Kenya. J. Clean. Prod. 81, 81–88 (2014). https://doi.org/10.1016/j.jclepro.2014.06.002

    Article  Google Scholar 

  16. Guo, Z., et al.: Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel 272, 117632 (2020). https://doi.org/10.1016/j.fuel.2020.117632

    Article  Google Scholar 

  17. Lubwama, M., Yiga, V.A.: Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda. Renew. energy 118, 43–55 (2018)

    Article  Google Scholar 

  18. De Oliveira Maia, B.G., Souza, O., Marangoni, C., Hotza, D., De Oliveira, A.P.N., Sellin, N.: Production and characterization of fuel briquettes from banana leaves waste. Chem. Eng. Trans. 37, 439–444 (2014). https://doi.org/10.3303/CET1437074

    Article  Google Scholar 

  19. Gill, N., Dogra, R., Dogra, B.: Influence of moisture content, particle size, and binder ratio on quality and economics of rice straw briquettes. Bioenergy Res. 11(1), 54–68 (2018). https://doi.org/10.1007/s12155-017-9877-9

    Article  Google Scholar 

  20. Srivastava, N.S.L., Narnaware, S.L., Makwana, J.P., Singh, S.N., Vahora, S.: (2019) Investigating the energy use of vegetable market waste by briquetting. Renew. Energy 68, 270–275 (2014). https://doi.org/10.1016/j.renene.2014.01.047

    Article  Google Scholar 

  21. Stolarski, M.J., Szczukowski, S., Tworkowski, J., Krzyzaniak, M., Gulczyński, P., Mleczek, M.: Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 57, 20–26 (2013). https://doi.org/10.1016/j.renene.2013.01.005

    Article  Google Scholar 

  22. Investir au Cameroun, “Bussiness in Cameroon,” www.investiraucameroun.com, 2021.

  23. Ishengoma, E.K., Igangula, N.H.: Determinants of household choice of cooking energy-mix in a peri-urban setting in Tanzania. Energy Sustain. Dev. 65, 25–35 (2021). https://doi.org/10.1016/j.esd.2021.09.004

    Article  Google Scholar 

  24. Tamba, J.G.: LPG consumption and economic growth, 1975–2016: evidence from Cameroon. Int. J. Energy Sect. Manag. 15(1), 195–208 (2021). https://doi.org/10.1108/IJESM-01-2020-0005

    Article  Google Scholar 

  25. Obi, O.F., Ezema, J.C., Okonkwo, W.I.: Energy performance of biomass cookstoves using fuel briquettes. Biofuels 11(4), 467–478 (2020). https://doi.org/10.1080/17597269.2017.1374769

    Article  Google Scholar 

  26. Kapen, P.T., Tenkeu, M.N., Yadjie, E., Tchuen, G.: Production and characterization of environmentally friendly charcoal briquettes obtained from agriculture waste: case of Cameroon”. Int. J. Environ. Sci. Technol (2021). https://doi.org/10.1007/s13762-021-03497-7

    Article  Google Scholar 

  27. Sakellariou, E.I., Axaopoulos, P.J., Wright, A.J.: Energy and economic evaluation of a solar assisted ground source heat pump system for a north mediterranean city. Energy Build. 231, 110640 (2021). https://doi.org/10.1016/j.enbuild.2020.110640

    Article  Google Scholar 

  28. Sakellariou, E.I., Wright, A.J., Axaopoulos, P.J.: Energy, economic and emission assessment of a solar assisted shallow earth borehole field heat pump system for domestic space heating in a north European climate. Geothermics 95, 102159 (2021). https://doi.org/10.1016/j.geothermics.2021.102159

    Article  Google Scholar 

  29. G. Tchatat, “Cameroun – Contribution a La Preparation Du Rapport National Pour La Formulation Du Livre Blanc Regional Sur L’Acces Universel Aux Services Energetiques Integrant Le Developpement Des Energies Renouvelables Et De L’Efficacite Energetique,” Cameroon, pp. 1–245, 2014, [Online]. Available: http://www.se4all.org/sites/default/files/Cameroon_RAGA_FR_Released.pdf.

  30. INS, “Annuaire statistique du Cameroun, Institut National de la Statistique,” 2008.

  31. INS, “Annuaire statistique du Cameroun, Institut National de la Statistique,” 2013.

  32. N. Schlag and F. Zuzarte, “Market Barriers to Clean Cooking Fuels in Sub-Saharan Africa: A Review of Literature,” Fuel, no. April, pp. 1–21, 2008, [Online]. Available: http://sei-international.org/mediamanager/documents/Publications/Climate/market_barriers_clean_cooking_fuels_21april.pdf.

  33. INS, “Agriculture. Annuaire statistique. Chapitre 13,” 2017.

  34. Doggart, N., et al.: The influence of energy policy on charcoal consumption in urban households in Tanzania. Energy Sustain. Dev. 57, 200–213 (2020). https://doi.org/10.1016/j.esd.2020.06.002

    Article  Google Scholar 

  35. Wiafe, E.D.: Fuel-wood usage assessment among rural households in Ghana. Spanish J. Rural Dev (2013). https://doi.org/10.5261/2013.gen1.04

    Article  Google Scholar 

  36. Sana, A., Kafando, B., Dramaix, M., Meda, N., Bouland, C.: Household energy choice for domestic cooking: distribution and factors influencing cooking fuel preference in Ouagadougou. Environ. Sci. Pollut. Res. 27(15), 18902–18910 (2020). https://doi.org/10.1007/s11356-020-08427-7

    Article  Google Scholar 

  37. Uhunamure, S.E., Nethengwe, N.S., Musyoki, A.: Driving forces for fuelwood use in households in the thulamela municipality, South Africa. J. Energy South. Africa 28(1), 25–34 (2017). https://doi.org/10.17159/2413-3051/2017/v28i1a1635

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out in the framework of the HIGHER EDUCATION—KA107 INTERNATIONAL MOBILITY project between University of Douala and University of West Attica, Athens, Greece. The authors acknowledge the European Union and the ERASMUS + Program [Agreement No 205] for support. Authors thank department of mechanical engineering of University of West Attica.

Author information

Authors and Affiliations

Authors

Contributions

BVB involved in conceptualisation and writing original draft; PJA involved in methodology and review and editing original draft; OTS involved in software and visualisation; EIS involved in review and editing original draft; and JGT involved in supervision and project administration.

Corresponding author

Correspondence to Bill Vaneck Bot.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bot, B.V., Axaopoulos, P.J., Sosso, O.T. et al. Economic analysis of biomass briquettes made from coconut shells, rattan waste, banana peels and sugarcane bagasse in households cooking. Int J Energy Environ Eng 14, 179–187 (2023). https://doi.org/10.1007/s40095-022-00508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00508-2

Keywords

Navigation