Skip to main content

Advertisement

Log in

The effect of biomass separation method on the efficiency of hydrogen production by Platymonas subcordiformis

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

Platymonas subcordiformis may be deemed a prospective species in terms of its hydrogen production capacity. The efficiency of hydrogen production by these microalgae is affected by the method of sulfur compounds removal from the culture medium, which urges the search for effective separation methods. This study aimed to determine the feasibility of harnessing membrane vacuum filtration (MVF) for P. subcordiformis microalgae biomass separation from the culture medium to boost the hydrogen yield. Its results proved a positive impact of the filtration method on hydrogen production. Higher technological performance due to the use of MVF was recorded in the variants with biomass concentration in respirometers ensured at 5.0 gODM/dm3. In the most effective variant, hydrogen yield after biomass concentration using MVF reached 156.3 ± 11.0 cm3 H2 at the mean production rate of r = 1.38 ± 0.1 cm3/h, whereas after centrifugation the respective values were at 138.3 ± 12.8 cm3 H2 and r = 1.09 ± 0.09 cm3/h. Hydrogen production efficiency was also found to significantly depend on the initial biomass concentration in respirometers and culture medium composition at the stage of biomass cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weimann, L., Gabrielli, P., Boldrini, A., Kramer, G.J., Gazzani, M.: Optimal hydrogen production in a wind-dominated zero-emission energy system. Adv. Appl. Energy (2021). https://doi.org/10.1016/j.adapen.2021.100032

    Article  Google Scholar 

  2. Singla, S., Shetti, N.P., Basu, S., Mondal, K., Aminabhavi, T.M.: Hydrogen production technologies-membrane based separation, storage and challenges. J. Environ. Manag. 302, 113963 (2022). https://doi.org/10.1016/j.jenvman.2021.113963

    Article  Google Scholar 

  3. Lux, B., Pfluger, B.: A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050. Appl. Energy 269, 115011 (2020). https://doi.org/10.1016/j.apenergy.2020.115011

    Article  Google Scholar 

  4. Tashie-Lewis, B.C., Nnabuife, S.G.: Hydrogen production, distribution, storage and power conversion in a hydrogen economy: a technology review. Chem. Eng. J. Adv. 8, 100172 (2021). https://doi.org/10.1016/j.ceja.2021.100172

    Article  Google Scholar 

  5. Aziz, M., Darmawan, A., Juangsa, F.B.: Hydrogen production from biomasses and wastes: a technological review. Int. J. Hydrog. Energy 46(68), 33756–33781 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.189

    Article  Google Scholar 

  6. Dębowski, M., Dudek, M., Zieliński, M., Nowicka, A., Kazimierowicz, J.: Microalgal hydrogen production in relation to other biomass-based technologies—a review. Energies 14, 6025 (2021). https://doi.org/10.3390/en14196025

    Article  Google Scholar 

  7. Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P.: Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 91, 665–694 (2018). https://doi.org/10.1016/j.rser.2018.04.043

    Article  Google Scholar 

  8. Kumar, R., Kumar, A., Pal, A.: An overview of conventional and non-conventional hydrogen production methods. Mater. Today Proc. 46(11), 5353–5359 (2021). https://doi.org/10.1016/j.matpr.2020.08.793

    Article  Google Scholar 

  9. Chozhavendhan, S., Rajamehala, M., Karthigadevi, G., Praveenkumar, R., Bharathiraja, B.: A review on feedstock, pretreatment methods, influencing factors, production and purification processes of bio-hydrogen production. Case Stud. Chem. Environ. Eng. 2, 100038 (2020). https://doi.org/10.1016/j.cscee.2020.100038

    Article  Google Scholar 

  10. Saha, R., Bhattacharya, D., Mukhopadhyay, M.: Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: a comprehensive review. Energy Convers. Manag. (2022). https://doi.org/10.1016/j.ecmx.2021.100153

    Article  Google Scholar 

  11. Zuorro, A., García-Martínez, J.B., Barajas-Solano, A.F.: The application of catalytic processes on the production of algae-based biofuels: a review. Catalysts 11, 22 (2021). https://doi.org/10.3390/catal11010022

    Article  Google Scholar 

  12. Show, K.Y., Yan, Y.G., Ling, M., Ye, G.X., Li, T., Lee, D.J.: Hydrogen production from algal biomass—advances, challenges and prospects. Bioresour. Technol. 257, 290–300 (2018). https://doi.org/10.1016/j.biortech.2018.02.105

    Article  Google Scholar 

  13. Dudek, M., Dębowski, M., Nowicka, A., Kazimierowicz, J., Zieliński, M.: The effect of autotrophic cultivation of Platymonas subcordiformis in waters from the natural aquatic reservoir on hydrogen yield. Resources 11, 31 (2022). https://doi.org/10.3390/resources11030031

    Article  Google Scholar 

  14. Goswami, R.K., Mehariya, S., Obulisamy, P.K., Verma, P.: Advanced microalgae-based renewable biohydrogen production systems: a review. Bioresour. Technol. 320, 124301 (2021). https://doi.org/10.1016/j.biortech.2020.124301

    Article  Google Scholar 

  15. Ni, F.M., Leung, D.Y.C., Leung, M.K.H., Sumathy, K.: An overview of hydrogen production from biomass. Fuel Process. Technol. 87, 461–472 (2006). https://doi.org/10.1016/j.fuproc.2005.11.003

    Article  Google Scholar 

  16. Zhang, L., Happe, T., Melis, A.: Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214, 552–561 (2002). https://doi.org/10.1007/s004250100660

    Article  Google Scholar 

  17. Chen, C.L., Chang, J.S., Lee, D.J.: Dewatering and drying methods for microalgae. Dry Technol. 33, 443–454 (2015). https://doi.org/10.1080/07373937.2014.997881

    Article  Google Scholar 

  18. Dębowski, M., Kisielewska, M., Kazimierowicz, J., Rudnicka, A., Dudek, M., Romanowska-Duda, Z., Zieliński, M.: The effects of microalgae biomass co-substrate on biogas production from the common agricultural biogas plants feedstock. Energies 13, 2186 (2020). https://doi.org/10.3390/en13092186

    Article  Google Scholar 

  19. Grechanik, V., Tsygankov, A.: Recent advances in microalgal hydrogen production. In: Shen, J.R., Satoh, K., Allakhverdiev, S.I. (eds.) Photosynthesis: molecular approaches to solar energy conversion advances in photosynthesis and respiration (including bioenergy and related processes), vol. 47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67407-6_22

    Chapter  Google Scholar 

  20. Fasaei, F., Bitter, J.H., Slegers, P.M., van Boxtel, A.J.B.: Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 31, 347–362 (2018). https://doi.org/10.1016/j.algal.2017.11.038

    Article  Google Scholar 

  21. Shao, P., Darcovich, K., McCracken, T., Ordorica-Garcia, G., et al.: Algae-dewatering using rotary drum vacuum filters: process modeling, simulation and techno-economics. Chem. Eng. J. 268, 67–75 (2015). https://doi.org/10.1016/j.cej.2015.01.029

    Article  Google Scholar 

  22. Guan, Y., Deng, M., Yu, X., Zhang, W.: Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J. 19(1), 69–73 (2004). https://doi.org/10.1016/j.bej.2003.10.006

    Article  Google Scholar 

  23. Qi, M., Yao, C., Sun, B., et al.: Application of an in situ CO2–bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis. Biotechnol. Biofuels 12, 184 (2019). https://doi.org/10.1186/s13068-019-1523-7

    Article  Google Scholar 

  24. Xie, J., Zhang, Y., Li, Y., Wang, Y.: Mixotrophic cultivation of Platymonas subcordiformis. Environ. Boil. Fishes 13, 343–347 (2001). https://doi.org/10.1023/a:1017532302360

    Article  Google Scholar 

  25. Faraloni, C., Ena, A., Pintucci, C., Torzillo, G.: Enhanced hydrogen production by means of sulfur-deprived Chlamydomonas reinhardtii cultures grown in pretreated olive mill wastewater. Int. J. Hydrog. Energy 36, 5920–5931 (2011). https://doi.org/10.1016/j.ijhydene.2011.02.007

    Article  Google Scholar 

  26. Deng, X.Y., Xue, C.Y., Chen, B., Amoah, P.K., Li, D., Hu, X.L., Gao, K.: Glucose addition-induced changes in the growth and chemical compositions of a freshwater microalga Chlorella kessleri. J. Chem. Technol. Biotechnol. 94(4), 1202–1209 (2019). https://doi.org/10.1002/jctb.5870

    Article  Google Scholar 

  27. Chong, C.C., Cheng, Y.W., Ishak, S., Lam, M.K., Lim, J.W., Tan, I.S., Show, P.L., Lee, K.T.: Anaerobic digestate as a low-cost nutrient source for sustainable microalgae cultivation: a way forward through waste valorization approach. Sci. Total Environ. 803, 4 (2022). https://doi.org/10.1016/j.scitotenv.2021.150070

    Article  Google Scholar 

  28. Tejido-Nuñez, Y., Aymerich, E., Sancho, L., Refardt, D.: Co-cultivation of microalgae in aquaculture water: interactions, growth and nutrient removal efficiency at laboratory- and pilot-scale. Algal Res. 49, 101940 (2020). https://doi.org/10.1016/j.algal.2020.101940

    Article  Google Scholar 

  29. Mahlia, T.M.I., Syazmi, Z.A.H.S., Mofijur, M., Abas, A.E.P., Bilad, M.R., Ong, H.C., Silitonga, A.S.: Patent landscape review on biodiesel production: technology updates. Renew. Sustain. Energy Rev. 118, 109526 (2020). https://doi.org/10.1016/j.rser.2019.109526

    Article  Google Scholar 

  30. Singh, G., Patidar, S.K.: Microalgae harvesting techniques: a review. J. Environ. Manag. 217, 499–508 (2018). https://doi.org/10.1016/j.jenvman.2018.04.010

    Article  Google Scholar 

  31. Wicaksana, F., Fane, A.G., Pongpairoj, P., Field, R.: Microfiltration of algae (Chlorella sorokiniana): critical flux, fouling and transmission. J. Membr. Sci. 387, 83–92 (2012). https://doi.org/10.1016/j.memsci.2011.10.013

    Article  Google Scholar 

  32. Milledge, J.J., Heaven, S.: A review of the harvesting of micro-algae for biofuel production. Rev. Environ. Sci. Biotechnol. 12(2), 165–178 (2013). https://doi.org/10.1007/s11157-012-9301-z

    Article  Google Scholar 

  33. Castro-Muñoz, R., García-Depraect, O.: Membrane-based harvesting processes for microalgae and their valuable-related molecules: a review. Membranes 11, 585 (2021). https://doi.org/10.3390/membranes11080585

    Article  Google Scholar 

  34. Marbelia, L., Mulier, M., Vandamme, D., Muylaert, K., Szymczyk, A., Vankelecom, I.F.J.: Polyacrylonitrile membranes for microalgae filtration: influence of porosity, surface charge and microalgae species on membrane fouling. Algal Res. 19, 128–137 (2016). https://doi.org/10.1016/j.algal.2016.08.004

    Article  Google Scholar 

  35. Molina Grima, E.M., Belarbi, E.-H., Acién Fernández, F.G., Medina, A.R., Chisti, Y.: Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20, 491–515 (2002). https://doi.org/10.1016/S0734-9750(02)00050-2

    Article  Google Scholar 

  36. Menegazzo, M.L., Fonseca, G.G.: Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renew. Sustain. Energy Rev. 107, 87–107 (2019). https://doi.org/10.1016/j.rser.2019.01.064

    Article  Google Scholar 

  37. Knuckey, R.M., Brown, M.R., Robert, R., Frampton, D.M.: Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult. Eng. 35(3), 300–313 (2006). https://doi.org/10.1016/j.aquaeng.2006.04.001

    Article  Google Scholar 

  38. Hahn, J.J., Ghirardi, M.L., Jacoby, W.A.: Immobilized algal cells used for hydrogen production. Biochem. Eng. J. 37(1), 75–79 (2007). https://doi.org/10.1016/j.bej.2007.03.010

    Article  Google Scholar 

  39. Laurinavichene, T.V., Tolstygina, I.V., Galiulina, R.R., Ghirardi, M.L., Seibert, M., Tsygankov, A.A.: Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction. Int. J. Hydrog. Energy 27, 1245–1249 (2002)

    Article  Google Scholar 

  40. Rashid, N., Song, W., Park, J., Jin, H.F., Lee, K.: Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J. Ind. Eng. Chem. 15(4), 498–503 (2009). https://doi.org/10.1016/j.jiec.2008.12.013

    Article  Google Scholar 

  41. Sharma, A., Arya, S.K.: Hydrogen from algal biomass: a review of production process. Biotechnol. Rep. 15, 63–69 (2017). https://doi.org/10.1016/j.btre.2017.06.001

    Article  Google Scholar 

  42. Dudek, M., Dębowski, M., Zieliński, M., Nowicka, A., Rusanowska, P.: Water from the Vistula Lagoon as a medium in mixotrophic growth and hydrogen production by Platymonas subcordiformis. Int. J. Hydrog. Energy 43(20), 9529–9534 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.039

    Article  Google Scholar 

  43. Rashid, N., Lee, K., Mahmood, Q.: Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Biores. Technol. 102(2), 2101–2104 (2011). https://doi.org/10.1016/j.biortech.2010.08.032

    Article  Google Scholar 

  44. Van Ginkel, S., Logan, B.E.: Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ. Sci. Technol. 39(23), 9351–9356 (2005). https://doi.org/10.1021/es0510515

    Article  Google Scholar 

  45. Tamburic, B., Zemichael, F.W., Maitland, G.C., Hellgardt, K.: Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrog. Energy 36, 1–5 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.074

    Article  Google Scholar 

  46. Vigneswaran, S.: Vacuum filtration. In: Water, Wastewater, and Sludge Filtration. CRC Press Inc, Boca Raton, pp. 225–236 (1989)

  47. Goh, A.: Production of microalgae using pig waste as a substrate: presented... at Algal Biomass Workshop, University of Colorado, Boulder, USA, 5–7 Apr 1984

  48. Alam, M.A., Wang, Z., Yuan, Z.: Generation and harvesting of microalgae biomass for biofuel production. In: Tripathi, B., Kumar, D. (eds.) Prospects and Challenges in Algal Biotechnology. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-1950-0_3

    Chapter  Google Scholar 

Download references

Funding

The manuscript was supported by Project financially supported by Minister of Education and Science in the range of the program entitled “Regional Initiative of Excellence” for the years 2019–2022, Project No. 010/RID/2018/19, amount of funding: 12,000,000 PLN, and the work WZ/WB-IIŚ/3/2022, funded by the Minister of Education and Science.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MD, AN and MZ. The first draft of the manuscript was written by MD and JK, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcin Dębowski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudek, M., Nowicka, A., Zieliński, M. et al. The effect of biomass separation method on the efficiency of hydrogen production by Platymonas subcordiformis. Int J Energy Environ Eng 14, 167–177 (2023). https://doi.org/10.1007/s40095-022-00507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00507-3

Keywords

Navigation