Skip to main content
Log in

Evaluation of Brazilian regulatory parameters in technical losses calculation: a case of study

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

In Brazil, the regulatory agency defines how much revenue each distribution utility will have to cover the technical losses cost. This amount is defined by an estimation of technical losses via power flow with systems modeled in detail through data provided yearly by each utility. In this process, some assumptions and simplifications are considered to reduce required data and to set some limits in technical losses. Therefore, some network inefficiencies are not considered in the results. However, these parameters are under scrutiny by the utilities as they could result in revenue losses. In this context, this paper evaluates if these assumptions are well balanced through large-scale tests in a real network composed by 724 feeders. The study was conducted in Open Distribution System Simulator (OpenDSS), the same software adopted by the Brazilian regulatory agency, and shows which parameters have more impact in the technical losses calculation. From the results, it is possible to verify a high impact on technical losses with the adoption of standards for transformer losses and also a great relevance of the load model adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ibrahim, K.A., Au, M.T., Gan, C.K., Tang, J.H.: System wide MV distribution network technical losses estimation based on reference feeder and energy flow model. Int. J. Electr. Power Energy Syst. 93, 440–450 (2017). https://doi.org/10.1016/j.ijepes.2017.06.011

    Article  Google Scholar 

  2. ANEEL: Energy Losses in Distribuition Systems (2021). https://www.aneel.gov.br/documents/654800/18766993/relatório+perdas+de+energia_+eição+1-2019-02-07.pdf. Accessed 15 September 2021

  3. Sadovskaia, K., Bogdanov, D., Honkapuro, S., Breyer, C.: Power transmission and distribution losses – a model based on available empirical data and future trends for all countries globally. Int. J. Electr. Power Energy Syst. 107, 98–109 (2019). https://doi.org/10.1016/j.ijepes.2018.11.012

    Article  Google Scholar 

  4. CIRED: Reduction of Technical and Non-Technical Losses in Distribution Networks. Working Group on Losses Reduction, Glasgow (2017). http://www.cired.net/files/download/188. Accessed 20 September 2021.

  5. Albach, M.: Two-dimensional calculation of winding losses in transformers. IEEE 31st Annual Power Electronics Specialists Conference. 3:1639–1644 https://doi.org/10.1109/PESC.2000.880550

  6. Dos Santos, C.M.P.: Determination of electric power losses in distribution systems. IEEE/PES Trans. Distribut. Conf. Expos.: Latin Am. 540, 1–5 (2006). https://doi.org/10.1109/TDCLA.2006.311585

    Article  Google Scholar 

  7. Grainger, J. J., Kendrew, T. J.: Evaluation of technical losses on electric distribution systems. IEE Conference Publication. Brighton, pp. 488–493 (1989)

  8. Flaten, D.L.: Distribution system losses calculated by percent loading. IEEE Trans. Power Syst. 3, 1263–1269 (1988). https://doi.org/10.1109/59.14590

    Article  Google Scholar 

  9. Dickert, J., Hable, M., Schegner, P.: Energy loss estimation in distribution networks for planning purposes. IEEE Bucharest PowerTech Conference. Bucharest, Romania, pp. 1–6 (2009). https://doi.org/10.1109/PTC.2009.5281997

  10. Shenkman, A.L.: Energy loss computation by using statistical techniques. IEEE Trans. Power Deliv. 5, 254–258 (1990). https://doi.org/10.1109/61.10728111

    Article  Google Scholar 

  11. Lasso, H., Ascanio, C., Guglia, M.: A Model for calculating technical losses in the secondary energy distribution networ. IEEE/PES Transmission & Distribution Conference and Exposition: Latin America. Caracas, Venezuela, pp. 1–6 (2006). https://doi.org/10.1109/TDCLA.2006.311651

  12. Nadira, R., Benchluch, S., Dortolina, C. A.: A novel approach to computing distribution losses. IEEE PES Transmission and Distribution Conference and Exposition. Chicago, USA, pp. 659–663 (2003). https://doi.org/10.1109/TDC.2003.1335355

  13. Au, M. T., Anthony. T. M., Kamaruddin, N., et al.: A simplified approach in estimating technical losses in distribution network based on load profile and feeder characteristics. IEEE 2nd International Power and Energy Conference. pp. 1661–1665 (2008). https://doi.org/10.1109/PECON.2008.4762745

  14. Aranha Neto, E.A.C., Coelho, J.: Probabilistic methodology for technical and non-technical losses estimation in distribution system. Electr. Power Syst. Res. 97, 93–99 (2013). https://doi.org/10.1016/j.epsr.2012.12.008

    Article  Google Scholar 

  15. Rao, P.S.N., Deekshit, R.: Energy loss estimation in distribution feeders. IEEE Trans. Power Deliv. 21, 1092–1100 (2006). https://doi.org/10.1109/TPWRD.2005.861240

    Article  Google Scholar 

  16. Oliveira, M.E., Padilha-Feltrin, A.: A top-down approach for distribution loss evaluation. IEEE Trans. Power Deliv. 24, 2117–2124 (2009). https://doi.org/10.1109/TPWRD.2009.2014266

    Article  Google Scholar 

  17. Dortolina, C.A., Nadira, R.: The loss that is unknown is no loss at all: a top-down/bottom-up approach for estimating distribution losses. IEEE Trans. Power Syst. 20, 1119–1125 (2005). https://doi.org/10.1109/TPWRS.2005.846104

    Article  Google Scholar 

  18. ANEEL: Electrical Energy Distribution Procedures, Module 7: Distribution Systems Losses’ Calculation (2017). https://www.aneel.gov.br/documents/656827/14866914/Módulo7_Revisao_5+-+Retificado/669bf2b6-7fb4-07e8-f5fd-0bea4d83ad34. Accessed 20 September 2021

  19. Messinis, G.M., Hatziargyriou, N.D.: Review of non-technical loss detection methods. Electr. Power Syst. Res. 158, 250–266 (2018). https://doi.org/10.1016/j.epsr.2018.01.005

    Article  Google Scholar 

  20. Dugan, R. C., Montenegro, D.: Reference Guide - The Open Distribution System Simulator OpenDSS (2020). https://sourceforge.net/projects/electricdss/files/OpenDSS/OpenDSSManual.pdf/download. Accessed 21 September 2021

  21. IEEE Task Force: Standard load models for power flow and dynamic performance simulation. IEEE Trans. Power Syst. 10, 1302–1313 (1995). https://doi.org/10.1109/59.466523

    Article  Google Scholar 

  22. Haque, M.H.: Load flow solution of distribution systems with voltage dependent load models. Electr. Power Syst. Res. 36, 151–156 (1996). https://doi.org/10.1016/0378-7796(95)01025-4

    Article  Google Scholar 

  23. IEEE Task Force: Load representation for dynamic performance analysis (of power systems). IEEE Trans. Power Syst. 8, 472–482 (1993). https://doi.org/10.1109/59.260837

    Article  Google Scholar 

  24. Ram, S.S., Daram, S.B., Venkataramu, P.S., Nagaraj, M.S.: Analysis of ZIP load modeling in power transmission system. Int. J. Control and Automat. 11, 11–24 (2018)

    Article  Google Scholar 

  25. Arif, A., Wang, Z., Wang, J., et al.: Load modeling - a review. IEEE Trans. Smart Grid. 9, 5986–5999 (2018). https://doi.org/10.1109/TSG.2017.2700436

    Article  Google Scholar 

  26. Bokhari, A., Alkan, A., Dogan, R., et al.: Experimental determination of the ZIP coefficients for modern residential, commercial, and industrial loads. IEEE Trans. Power Deliv. 29, 1372–1381 (2014). https://doi.org/10.1109/TPWRD.2013.2285096

    Article  Google Scholar 

  27. Durusu, A., Kekezoglu, B., Elma, O., et al.: Determination of zip coefficients for residential loads. Pressacademia. 5, 176–180 (2017)

    Article  Google Scholar 

  28. Bircan, M., Durusu, A., Kekezoglu, B., et al.: Experimental determination of ZIP coefficients for residential appliances and ZIP model based appliance identification: the case of YTU Smart Home. Electr. Power Syst. Res. 179, 106070 (2020). https://doi.org/10.1016/j.epsr.2019.106070

    Article  Google Scholar 

  29. Collin, A.J., Acosta, J.L., Hayes, B.P., Djokic, S.Z.: Component-based aggregate load models for combined power flow and harmonic analysis. Mediterranean Conf. Exhibition on Power Gen., Trans., Distribut. Energy Convers. (2010). https://doi.org/10.1049/cp.2010.0901

    Article  Google Scholar 

  30. Milanović, J.V., Yamashita, K., Villanueva Martínez, S., et al.: International industry practice on power system load modeling. IEEE Trans. Power Syst. 28, 3038–3046 (2013)

    Article  Google Scholar 

  31. Korunović, L. M., Yamashita, K., Djokić, S. Z., et al.: Overview of Existing Load Models and Their Applications. CIGRE SC C4 Colloquium 2012 in Japan (2012)

  32. Srinivas, M.S.: Distribution load flows: a brief review. IEEE Power Eng. Soc. Winter Meeting. 2, 942–945 (2000). https://doi.org/10.1109/PESW.2000.850058

    Article  Google Scholar 

  33. Kersting, W. H., Green, R. K.: The application of Carson’s equation to the steady-state analysis of distribution feeders. IEEE/PES Power Systems Conference and Exposition. pp. 1–6 (2011). https://doi.org/10.1109/PSCE.2011.5772579

  34. Kersting, W.H., Phillips, W.H.: Distribution feeder line models. IEEE Trans. Ind. Appl. 31, 715–720 (1995). https://doi.org/10.1109/28.395276

    Article  Google Scholar 

  35. Georgilakis, P.S.: Environmental cost of distribution transformer losses. Appl. Energy. 88, 3146–3155 (2011). https://doi.org/10.1016/j.apenergy.2010.12.021

    Article  Google Scholar 

  36. Shareghi, M., Phung, B. T., Naderi, M. S., et al.: Effects of current and voltage harmonics on distribution transformer losses. IEEE International Conference on Condition Monitoring and Diagnosis. pp. 633–636 (2012). https://doi.org/10.1109/CMD.2012.6416225

  37. Sadati, S. B., Tahani, A., Darvishi, B., et al.: Comparison of distribution transformer losses and capacity under linear and harmonic loads. IEEE 2nd International Power and Energy Conference. pp. 1265–1269 (2008). https://doi.org/10.1109/PECON.2008.4762661

  38. Gampa, S.R., Das, D.: Optimum placement of shunt capacitors in a radial distribution system for substation power factor improvement using fuzzy GA method. Int. J. Electr. Power Energy Syst. 77, 314–326 (2016). https://doi.org/10.1016/j.ijepes.2015.11.056

    Article  Google Scholar 

  39. Das, D.: Optimal placement of capacitors in radial distribution system using a Fuzzy-GA method. Int. J. Electr. Power Energy Syst. 30, 361–367 (2008). https://doi.org/10.1016/j.ijepes.2007.08.004

    Article  Google Scholar 

  40. Saddique, M.W., Haroon, S.S., Amin, S., et al.: Optimal placement and sizing of shunt capacitors in radial distribution system using polar bear optimization algorithm. Arab. J. Sci. Eng. 46, 873–899 (2021). https://doi.org/10.1007/s13369-020-04747-5

    Article  Google Scholar 

  41. Barbosa, T., Bonadia, R., Torquato, R., et al.: Assessment of the Technical Loss Calculation Method Used in Brazilian Distribution Systems. IEEE PES Transmission & Distribution Conference and Exhibition. pp. 1–6 (2020). https://doi.org/10.1109/TDLA47668.2020.9326128

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia S. Paul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, J.S., Aranha Neto, E.A.C. Evaluation of Brazilian regulatory parameters in technical losses calculation: a case of study. Int J Energy Environ Eng 14, 135–143 (2023). https://doi.org/10.1007/s40095-022-00504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00504-6

Keywords

Navigation