Skip to main content

Advertisement

Log in

Energy and exergy analysis of solar dryer with triple air passage direction collector powered by a wind generator

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

The objective of this study is to thermodynamically investigate the performance of solar dryers by delaying the airflow in the collector. For this reason, a triple air path on a single pass collector with the fan powered by a wind generator was developed and evaluated in a very humid climate. The evaluation parameters were drying efficiency, energy and exergy analysis, sustainability assessment, CO2 mitigation ability and effective moisture diffusivity of dried product. The results showed that the collector efficiency of triple air passage path collector designs improved the direct passage collector by 119%. The overall collector and drying efficiencies were 8.43% and 2.6% higher than the direct flow path collector. The specific energy consumption was 1.1033 kWh/kg while the specific moisture extraction rate was obtained as 0.273 kg/kW, respectively. The average exergy efficiency ranged between 38.09 and 63.81% while the waste exergy ratio, improvement potential and sustainability index for the three dryers ranged from 0.00 to 1.13, 7.54 × 10–7 to 2.003 kW and 0.00 to 11.47, respectively. Using the solar dryers instead of the coal-powered dryer will mitigate more CO2 into the atmosphere in the range of 9741.334 to 21,481. 476 tons of CO2 per year while using grid-based electricity will limit the least amount of CO2 in the range of 12.981 to 14.153351.50 tons of CO2 per year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A c :

Area of the collector (m2)

C p :

Specific heat (kJ/kg.K)

e s :

Specific exergy (kJ/kg)

E:

Thermal energy (J)

F R :

Overall heat removal factor

h :

Enthalpy (kJ/kg)

H :

Absolute humidity of the air (kgwater kg dry air)

I :

Intensity of radiation (W/m2)

k :

Heating value of diesel

L :

Thickness (m)

M :

Mass of product dried per day (kg/day) or molecular mass (g/mol) or moisture content (db or wb)

m :

Mass (kg)

P :

Internal moisture pressure of the product or pressure (Pa)

Q :

Heat (J)

r :

Equivalent radius (m)

R :

Universal gas constant (kJ/kg.K)

S :

Entropy (kJ/kg. K)

T :

Temperature (ºC)

U :

Overall heat loss (W/m2 ºC)

W :

Mass of moisture expelled from the product (kg)

X 0 v :

Molar ratio of water vapour in the air

y i :

Mole fraction of chemical species in the gaseous mixture at these same conditions

y 0 :

Mole fraction of chemical species in the ambient air at reference temperature

τ:

Transmittance

α:

Absorbance of the plate

ṁ:

Mass flow rate

η:

Efficiency of the generator

v :

Volume of diesel generator

a:

Air

bd:

Bone dried

b:

Back or biomass

e:

Edge or equilibrium

f:

Final or fuel

g:

Gas

i:

Initial

0:

Initial or reference state

p:

Pebbles or planum

r:

Radiation

s:

Sun

t:

Top or time

v:

Vapour

w:

Water

References

  1. Ndukwu, M.C., Ogunlowo, A.S., Olukunle, O.J.: Cocoa Bean (Theobroma Cacao L.) Drying Kinetics. Chilean J. Agric. Res. 70, 633–639 (2010)

    Article  Google Scholar 

  2. Nnamchi, O.A., Ndukwu, M.C., Nnamchi, S.N.: Modelling and simulation of multi-coupled heat and mass transfer processes: a case study of solar biomass dryer. Thermal Sci. Eng. Progress. 25(2021), 101007 (2021)

    Article  Google Scholar 

  3. Fudholi, A., Othman, M.Y., Ruslan, M.H., Yahya, M., Zaharim A., Sopian K.: Design and testing of solar dryer for drying kinetics of seaweed in Malaysia. (Lamrani et al. 2021) (2015)

  4. Lamrani, B., Kuznik, F., Ajbar, A., Boumaza, M.: Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates, Energy (228), 120598 (2021)

  5. Ndisya, J., Mbuge, D., Kulig, B., Gitau A., Hensel O., Sturm B.: Hot air drying of purple-speckled CocoyamCocoyam (Colocasia esculenta (L) Schott) Slices: optimisation of drying conditions for improved product quality and energy savings. Thermal Sci. Eng. Progress (18), 100557 (2020)

  6. Ndukwu, M.C., Bennamou, L., Abam, F.I.: Experience of solar drying in Africa: presentation of designs, operations, and models. Food Eng. Rev., 10, 211–244 (2018)

  7. Ndukwu, M.C., Onyenwigwe, D., Abam, F.I., Eke, A.B., C.D., Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy. https://doi.org/10.1016/j.renene.2020.03.016 (2020)

  8. Ndukwu, M.C., Dirioha, C., Abam, F.I., Ihediwa, V.E.: Heat and mass transfer parameters in the drying of cocoyamCocoyam slice. Case Stud. Thermal Eng., 9, 62–71. doi.org/https://doi.org/10.1016/j.csite.2016.12.003(2017)

  9. Bennamoun, N.P., Belhami, V.M.: Technical feasibility assessment of a solar chimney for food drying, solar energy. Brazil 82, 1987–2205 (2003)

    Google Scholar 

  10. Okoroigwe, E.C., Eke, M.N., Ugwu, H.U.: Design and evaluation of combined solar biomass dryer for small and medium enterprise for developing countries. Int. J. Phys. Sci. 25, 1341–1349 (2013)

    Google Scholar 

  11. Ching, L.H., Sachin, V.J, Sze, P.O., Arun, S.M.: Solar drying; fundamentals, applications and innovations, 1–32 (2012)

  12. Ndukwu, M.C., Bennamoun, L., Abam, F.I., Eke A.B., Ukoha D.: Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renew. Energy, 113, 1182–1192 (2017)

  13. Ndukwu, M.C., Simo-Tagne, M., Bennamoun, L.: Solar drying research of medicinal and aromatic plants: an African experience with assessment of the economic and environmental impact. Afr. J. Sci. Technol. Innov. Dev. (2020). https://doi.org/10.1080/20421338.2020.1776061

    Article  Google Scholar 

  14. Janjai, S., Srisittqokakuna, N., Balab, B.K.: Experimental and modeling performances of a roof-integrated solar drying system for drying herbs and spices. J Energy Silpakorn Univ Thailand. 33: 91–103,46 (2012)

  15. Fudholi, A., Kamarauzzaman S.M.H., Rusian U., Alghoul M.A.: Renewable and Sustainable Energy Reviews 14(1), 1–30 (2010)

  16. Mahmood, A.J., Aldabbagh, L.B.Y., Egelioglu, F.: Investigation of single and double-pass solar air heater with transverse fins and a package wire mesh layer. Energy Convers. Manage. 89, 599–607 (2015)

    Article  Google Scholar 

  17. Kesavan, S., Arjunan, T.V.: Experimental study on triple-pass solar air heater with thermal energy storage for drying mint leaves. Int. J. Energy Technol. Policy 14, 34–48 (2018)

    Article  Google Scholar 

  18. Ağbulut, Ü., Gürel, A.E., Biçen, Y.: Prediction 565 of daily global solar radiation using different machine learning algorithms: evaluation and comparison. Renew. Sustain. Energy Rev. 135, 110114 (2021)

    Article  Google Scholar 

  19. Youcef-Ali S.: Study and optimization of the thermal performances of the offset rectangular plate fin absorber plates, with various glazing (2005)

  20. Yassien, H.N.S., Alomar, O.R., Salih, M.M.M.: Performance analysis of triple-pass solar air heater system: effects of adding a net of tubes below absorber surface. Sol. Energy 207, 813–824 (2020)

    Article  Google Scholar 

  21. Nemś, M., Kasperski, J.: Experimental investigation 698 of concentrated solar air-heater with internal multiple-fin array. Renew. Energy 97, 722–730 (2016)

    Article  Google Scholar 

  22. Abo-Elfadl, S., Hassan, H., El-Dosoky, M.F.: Study of the performance of double pass solar air heater of a new designed absorber: an experimental work. Sol. Energy 198, 479–489 (2020)

    Article  Google Scholar 

  23. Khanlari, A., Güler, H.Ö., Tuncer, A.D., Şirin, C., Bilge, Y.C., Yılmaz, Y., Güngör, A.: Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renew. Energy 145, 1677–1692 (2020)

    Article  Google Scholar 

  24. Mund, C.: Rathore, S.K.: Sahoo, R.K. (2021) A review of solar air collectors about various modifications for performance enhancement. Solar Energy (228), 140–167

  25. Ndukwu, M.C., Abam, F.I., Manuwa, S.I., Briggs, T.A.: Exergetic performance indicators of a direct evaporative cooling system with different evaporative cooling pads. Int. J. Ambient Energy 38(7), 701–709 (2016). https://doi.org/10.1080/01430750.2016.1195774

    Article  Google Scholar 

  26. Argo, U., Bambang Dwi Ubaidillah, “Thin-layer drying of cassava chips in multipurpose convective tray dryer : Energy and exergy analyses,” 34(1): 435–442 (2020)

  27. Das Purkayastha, M., Nath, A., Deka, B.C. et al.: Thin layer drying of tomato slices. J. Food. Sci. Technol. 50, 642–653 (2013)

  28. Dhanushkodi, S.B., Wilson, V.H., Sudhakar, K.: Thermal performance evaluation of indirect forced cabinet solar dryer for cashew drying. Am.-Eurasian J. Agric. Environ. Sci. 14(11), 1248–1254 (2014)

    Google Scholar 

  29. Brenndorfer, B., Kennedy, L., Oswin-Bateman, C.O., Trim D.S., Mrema G.C., Wereko-Brommy C.: Solar Dryers—Their Role in Post-Harvest Processing (2nd edn.), The Commonwealth Secretariat, London. ISBN 0 85092 282 8, 298 0 (1987)

  30. Hajar Essalhi*, Rachid Tadili, Bargach M.N.: Conception of a solar air collector for an indirect solar dryer. Pear drying test. Energy procedia 141: 000–000 (2017)

  31. Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Process, Ed Wiley, New York (2006)

  32. Sagastume, G.A., Martínez, J.B.C., Vandecasteele, C.: Energy and exergy assessments of a lime shaft kiln. Appl. Therm. Eng. 51, 273–280 (2013)

    Article  Google Scholar 

  33. Ndukwu, M.C., Simo-Tagne, M., Abam, F.I., Onwuka, O.S., Prince, S., Bennamoun, L.: Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon 6(2), e03401 (2020). https://doi.org/10.1016/j.heliyon.2020.e03401

    Article  Google Scholar 

  34. Hatami, S., Payehaneh, G., Mehrpanahi, A.: Energy and exergy analysis of an indirect solar dryer based on a dynamic model. J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2019.118809

    Article  Google Scholar 

  35. Dincer, I.: Exergy as a potential tool for sustainable drying systems. Sustain. Cities Soc. 1, 91–96 (2011)

    Article  Google Scholar 

  36. Caliskan, H., Hepbasli, A., Dincer, I., Maisotsenko, V.: Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle. Int. J. Refrig 34, 980–990 (2011). https://doi.org/10.1016/j.ijrefrig.2011.02.001

    Article  Google Scholar 

  37. Ibrahim, A., Fudholi, A., Sopian, K., Othman, M.Y., Ruslan, M.H.: Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system. Energy Convers Manage 77, 527–534 (2014)

    Article  Google Scholar 

  38. Ould-Amrouche, O., Rekioua, D., Hamidat, A.: Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential. Appl. Energy 87, 3451–3459 (2010). https://doi.org/10.1016/j.apenergy.2010.05.021

    Article  Google Scholar 

  39. Youmatter: https://youmatter.world/fr/co2-kwh-electricite-france-mix-electrique/ [accessed the August 20, 2020] (2020)

  40. Simo-Tagne, M., Ndukwu, M.C., Zoulalian, A., Bennamoun, L., Kifani-Sahban, F., Rogaume, Y.: Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renewable Energy (2019). https://doi.org/10.1016/j.renene.2019.11.055

    Article  Google Scholar 

  41. Bennamoun, L.: Improving solar dryers‟ performances using design and thermal heat storage. Food Eng Rev 5, 230–248 (2013)

    Article  Google Scholar 

  42. Vivek Tomar a, G.N. Tiwari a, Brian Norton.Solar dryers for tropical food preservation: Thermophysics of crops, systems and components Solar Energy 154, 2–13 (2017)

  43. Ahmad Fudholi⁎, Kamaruzzaman Sopian. A review of solar air flat plate collector for drying application Renewable and Sustainable Energy Reviews 102: 333–345 (2019)

  44. Vishnuvardhan Reddy Mugi, Chandramohan V.P.: Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: a comparative assessment of forced and natural convection Thermal Science and Engineering Progress 24: 100950 (2021)

  45. Dincer, I., Rosen M.A.: Exergy energy, environment and sustainable development. Elsevier Ltd. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK (2013)

Download references

Funding

This research received no funding or support from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Macmanus C. Ndukwu.

Ethics declarations

Conflict of interest

There is no conflict of interest whatsoever among the authors or institutions.

Ethical approval

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndukwu, M.C., Okon, B.B., Abam, F.I. et al. Energy and exergy analysis of solar dryer with triple air passage direction collector powered by a wind generator. Int J Energy Environ Eng 14, 63–77 (2023). https://doi.org/10.1007/s40095-022-00502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00502-8

Keywords

Navigation