Skip to main content

Advertisement

Log in

Cooling technologies for enhancing photovoltaic–thermal (PVT) performance: a state of the art

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

Although photovoltaic cells are good technology that converts sunlight into electricity, it suffers from low efficiency in hot weather conditions. Photovoltaic–thermal technologies (PV/T) have addressed the problem of overheating PV cells utilizing several cooling methods. These technologies can improve the electrical efficiency of PV cells and provide thermal energy simultaneously. This work presents an updated review of the most critical PV cooling technologies and their impact on electrical and thermal efficiency, in addition to the performance formulas for each technology. An analytical comparison of the results of the studies conducted on each technique is presented to determine the best performance obtained. The strengths and weaknesses are presented and the most effective techniques that can be relied upon to develop and popularize PV systems in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

A c :

Collector surface area (m2)

a :

Length (m)

\(b\) :

Width (m)

C p :

Specific heat of working fluid (J/kg ℃)

\(C_{b}\) :

Conductance of the bond between the fin and tube

\(D_{h}\) :

Hydraulic diameter (m)

\(D_{i}\) :

Inner flow tube diameter (m)

\(D_{O}\) :

Outer flow tube diameter (m)

F R. :

The heat-removal factor

\(F^{\prime}\) :

Module efficiency factor

\(F\) :

Fin efficiency factor

G :

Solar radiation (W/m2)

\(h_{fi}\) :

Heat transfer coefficient of fluid (W/m2 ℃)

\(h_{r}\) :

Radiation heat transfer coefficient (W/m2℃)

\(k\) :

Thermal conductivity (W/m℃)

\(\dot{m}\) :

Flow rate of working fluid (kg/s)

\(P\) :

Produced power (W)

\(Q\) :

Useful thermal energy (W)

\(T_{i}\) :

Inlet flow temperature (℃)

\(T_{o}\) :

Outlet flow temperature (℃)

\(T_{pv}\) :

PV cell temperature (℃)

\(T_{ref}\) :

Reference temperature (℃)

\(U_{L}\) :

Overall heat transfer coefficient (W/m2 ℃)

\(W\) :

Distance between tubes (m

\(\alpha\) :

Absorption coefficient

\(\beta_{pv}\) :

Reference temperature coefficient

\(\eta_{ele}\) :

Electrical efficiency

\(\eta_{th}\) :

Thermal efficiency

\(\eta_{ref}\) :

Reference solar cell efficiency

\(\delta\) :

Thickness (m)

\(\tau\) :

Transmission coefficient

References

  1. IEA World energy outlook (iea) (2021).

  2. Kalogirou, S.: Solar energy engineering processes and systems. Elsevier/Academic Press, Burlington (2009)

    Google Scholar 

  3. Siecker, J., Kusakana, K., Numbi, B.P.: A review of solar photovoltaic systems cooling technologies. Renew. Sustain. Energy Rev. 79, 192–203 (2017)

    Article  Google Scholar 

  4. Chandrasekar, M., Senthilkumar, T.: Five decades of evolution of solar photovoltaic thermal (pvt) technology—a critical insight on review articles. J. Clean. Prod. 322, 128997 (2021)

    Article  Google Scholar 

  5. Tembhare, S.P., Barai, D.P., Bhanvase, B.A.: Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: a comprehensive review. Renew. Sustain. Energy Rev. 153, 111738 (2022)

    Article  Google Scholar 

  6. Ghadikolaei, S.S.C.: An enviroeconomic review of the solar PV cells cooling technology effect on the CO2 emission reduction. Sol. Energy 216, 468–492 (2021)

    Article  Google Scholar 

  7. Ali, H.M.: Recent advancements in pv cooling and efficiency enhancement integrating phase change materials based systems – a comprehensive review. Sol. Energy 197, 163–198 (2020)

    Article  Google Scholar 

  8. Jia, Y., Alva, G., Fang, G.: Development and applications of photovoltaic–thermal systems: a review. Renew. Sustain. Energy Rev. 102, 249–265 (2019)

    Article  Google Scholar 

  9. Sultan, S.M., Efzan, M.N.E.: Review on recent photovoltaic/thermal (PV/T) technology advances and applications. Sol. Energy 173, 939–954 (2018)

    Article  Google Scholar 

  10. Joshi, S.S., Dhoble, A.S.: Photovoltaic -thermal systems (PVT): technology review and future trends. Renew. Sustain. Energy Rev. 92, 848–882 (2018)

    Article  Google Scholar 

  11. Wu, J., Zhang, X., Shen, J., Wu, Y., Connelly, K., Yang, T., Tang, L., Xiao, M., Wei, Y., Jiang, K., Chen, C., Xu, P., Wang, H.: A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (pv/t) modules. Renew. Sustain. Energy Rev. 75, 839–854 (2017)

    Article  Google Scholar 

  12. Al-Waeli, A.H.A., Kazem, H.A., Chaichan, M.T., Sopian, K.: Photovoltaic/thermal (PV/T) systems. Springer, Cham (2019)

    Book  Google Scholar 

  13. Hossain, M.S., Pandey, A.K., Selvaraj, J., Rahim, N.A., Islam, M.M., Tyagi, V.V.: Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: energy, exergy and economic analysis. Renew. Energy 136, 1320–1336 (2019)

    Article  Google Scholar 

  14. Ren, X., Yu, M., Zhao, X., Li, J., Zheng, S., Chen, F., Wang, Z., Zhou, J., Pei, G., Ji, J.: Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model. Energy 190, 116338 (2020)

    Article  Google Scholar 

  15. Modjinou, M., Ji, J., Yuan, W., Zhou, F., Holliday, S., Waqas, A., Zhao, X.: Performance comparison of encapsulated pcm PV/T, microchannel heat pipe PV/T and conventional PV/T systems. Energy 166, 1249–1266 (2019)

    Article  Google Scholar 

  16. Ibrahim, A., Fudholi, A., Sopian, K., Othman, M.Y., Ruslan, M.H.: Efficiencies and improvement potential of building integrated photovoltaic thermal (bipvt) system. Energy Convers. Manage. 77, 527–534 (2014)

    Article  Google Scholar 

  17. Ibrahim, A., Othman, M.Y., Ruslan, M.H., Mat, S., Sopian, K.: Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew. Sustain. Energy Rev. 15, 352–365 (2011)

    Article  Google Scholar 

  18. Zhou, C., Liang, R., Zhang, J., Riaz, A.: Experimental study on the cogeneration performance of roll-bond-PVT heat pump system with single stage compression during summer. Appl. Therm. Eng. 149, 249–261 (2019)

    Article  Google Scholar 

  19. Barone, G., Buonomano, A., Forzano, C., Palombo, A., Panagopoulos, O.: Experimentation, modelling and applications of a novel low-cost air-based photovoltaic thermal collector prototype. Energy Convers. Manage. 195, 1079–1097 (2019)

    Article  Google Scholar 

  20. Hottel, H.C., Willier, A.: Evaluation of flat-plate solar collector performance. Use of Solar Fnergy University of Arizona Press, Tucson, Arizona:(1958)

  21. Duffie, J. A., Beckman, W. A.: Solar engineering of thermal processes,4th edn. New Jersey: Hoboken (N.J.) (2013)

  22. Xu, L., Ji, J., Cai, J., Ke, W., Tian, X., Yu, B., Wang, J.: A hybrid pv thermal (water or air) wall system integrated with double air channel and phase change material: a continuous full-day seasonal experimental research. Renew. Energy 173, 596–613 (2021)

    Article  Google Scholar 

  23. Çiftçi, E., Khanlari, A., Sözen, A., Aytaç, İ, Tuncer, A.D.: Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: a numerical and experimental investigation. Renew. Energy 180, 410–423 (2021)

    Article  Google Scholar 

  24. Zaite, A., Belouaggadia, N., Abid, C., Hartiti, B., Zahiri, L., Jammoukh, M.: Photovoltaic–thermal collectors for night radiative cooling and solar heating: numerical study. Materials Today: Proceedings. (2020)

  25. Elminshawy, N.A.S., Mohamed, A.M.I., Morad, K., Elhenawy, Y., Alrobaian, A.A.: Performance of pv panel coupled with geothermal air cooling system subjected to hot climatic. Appl. Therm. Eng. 148, 1–9 (2019)

    Article  Google Scholar 

  26. Kianifard, S., Zamen, M., Nejad, A.A.: Modeling designing and fabrication of a novel PV/T cooling system using half pipe. J. Clean. Prod. 253, 119972 (2020)

    Article  Google Scholar 

  27. Angelo Zarrella, G.E., Vivian, J., Croci, L., Besagni, G.: The validation of a novel lumped parameter model for photovoltaic thermal hybrid solar collectors: a new trnsys type. Energy Convers. Manage. 188, 414–428 (2019)

    Article  Google Scholar 

  28. Pang, W., Cui, Y., Zhang, Q., Yu, H., Zhang, L., Yan, H.: Experimental effect of high mass flow rate and volume cooling on performance of a water-type PV/T collector. Sol. Energy 188, 1360–1368 (2019)

    Article  Google Scholar 

  29. Herrando, M., Ramos, A., Zabalza, I., Markides, C.N.: A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors. Appl. Energy 235, 1583–1602 (2019)

    Article  Google Scholar 

  30. Praveen Kumar, B., Prince Winston, D., Pounraj, P., Muthu Manokar, A., Sathyamurthy, R., Kabeel, A.E.: Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination 435, 140–151 (2018)

    Article  Google Scholar 

  31. Castanheira, A.F.A., Fernandes, J.F.P., Branco, P.J.C.: Demonstration project of a cooling system for existing pv power plants in portugal. Appl. Energy 211, 1297–1307 (2018)

    Article  Google Scholar 

  32. Abdo, S., Saidani-Scott, H., Abdelrahman, M.A.: Numerical study with eco-exergy analysis and sustainability assessment for a stand-alone nanofluid PV/T. Therm. Sci. Eng. Progress. 24, 100931 (2021)

    Article  Google Scholar 

  33. Qeays, I.A., Yahya, S.M., Asjad, M., Khan, Z.A.: Multi-performance optimization of nanofluid cooled hybrid photovoltaic thermal system using fuzzy integrated methodology. J. Clean. Prod. 256, 120451 (2020)

    Article  Google Scholar 

  34. Ebaid, M.S.Y., Ghrair, A.M., Al-Busoul, M.: Experimental investigation of cooling photovoltaic (pv) panels using (tio 2) nanofluid in water -polyethylene glycol mixture and (al 2 o 3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Convers. Manage. 155, 324–343 (2018)

    Article  Google Scholar 

  35. Rostami, Z., Rahimi, M., Azimi, N.: Using high-frequency ultrasound waves and nanofluid for increasing the efficiency and cooling performance of a PV module. Energy Convers. Manage. 160, 141–149 (2018)

    Article  Google Scholar 

  36. Hasan, H.A., Sopian, K., Jaaz, A.H., Al-Shamani, A.N.: Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector. Sol. Energy 144, 321–334 (2017)

    Article  Google Scholar 

  37. Ghadikolaei, S.S.C.: Solar photovoltaic cells performance improvement by cooling technology: an overall review. Int. J. Hydrogen Energy 46, 10939–10972 (2021)

    Article  Google Scholar 

  38. Yao, J., Liu, W., Zhao, Y., Dai, Y., Zhu, J., Novakovic, V.: Two-phase flow investigation in channel design of the roll-bond cooling component for solar assisted PVT heat pump application. Energy Convers. Manage. 235, 113988 (2021)

    Article  Google Scholar 

  39. Lu, S., Liang, R., Zhang, J., Zhou, C.: Performance improvement of solar photovoltaic/thermal heat pump system in winter by employing vapor injection cycle. Appl. Therm. Eng. 155, 135–146 (2019)

    Article  Google Scholar 

  40. Shao, N., Ma, L., Zhang, J.: Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system. Energy 195, 116959 (2020)

    Article  Google Scholar 

  41. Lazzarin, R., Noro, M.: Photovoltaic/thermal (PV/T)/ground dual source heat pump: Optimum energy and economic sizing based on performance analysis. Energy Build. 211, 109800 (2020)

    Article  Google Scholar 

  42. Choi, H.-U., Kim, Y.-B., Son, C.-H., Yoon, J.-I., Choi, K.-H.: Experimental study on the performance of heat pump water heating system coupled with air type PV/T collector. Appl. Therm. Eng. 178, 115427 (2020)

    Article  Google Scholar 

  43. Shao, N., Ma, L., Zhang, J.: Experimental study on electrical and thermal performance and heat transfer characteristic of PV/T roof in summer. Applied Therm. Eng. 162, 114276 (2019)

    Article  Google Scholar 

  44. Modjinou, M., Ji, J., Li, J., Yuan, W., Zhou, F.: A numerical and experimental study of micro-channel heat pipe solar photovoltaics thermal system. Appl. Energy 206, 708–722 (2017)

    Article  Google Scholar 

  45. Zhang, T., Yan, Z.W., Xiao, L., Fu, H.D., Pei, G., Ji, J.: Experimental, study and design sensitivity analysis of a heat pipe photovoltaic/thermal system. Appl. Therm. Eng. 162, 114318 (2019)

    Article  Google Scholar 

  46. Alizadeh, H., AlhuyiNazari, M., Ghasempour, R., Shafii, M.B., Akbarzadeh, A.: Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe. Sol. Energy. 206, 455–463 (2020)

    Article  Google Scholar 

  47. Li, H., Sun, Y.: Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system. Energy Build. 158, 861–872 (2018)

    Article  Google Scholar 

  48. Chen, H., Zhang, L., Jie, P., Xiong, Y., Xu, P., Zhai, H.: Performance study of heat-pipe solar photovoltaic/thermal heat pump system. Appl. Energy 190, 960–980 (2017)

    Article  Google Scholar 

  49. Zhang, X., Zhao, X., Xu, J., Yu, X.: Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl. Energy 102, 1229–1245 (2013)

    Article  Google Scholar 

  50. Zhang, X., Zhao, X., Shen, J., Hu, X., Liu, X., Xu, J.: Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Sol. Energy 97, 551–568 (2013)

    Article  Google Scholar 

  51. Long, H., Chow, T.-T., Ji, J.: Building-integrated heat pipe photovoltaic/thermal system for use in hong kong. Sol. Energy 155, 1084–1091 (2017)

    Article  Google Scholar 

  52. Wang, Z., Qiu, F., Yang, W., Zhao, X., Mei, S.: Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires. Appl. Energy 170, 314–323 (2016)

    Article  Google Scholar 

  53. Jouhara, H., Milko, J., Danielewicz, J., Sayegh, M.A., Szulgowska-Zgrzywa, M., Ramos, J.B., Lester, S.P.: The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material. Energy 108, 148–154 (2016)

    Article  Google Scholar 

  54. Wu, S.Y., Zhang, Q.L., Xiao, L., Guo, F.H.: A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation. Energy Build. 43, 3558–3567 (2011)

    Article  Google Scholar 

  55. Sato, D., Yamada, N.: Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renew. Sustain. Energy Rev. 104, 151–166 (2019)

    Article  Google Scholar 

  56. Chaichan, M.T., Kazem, H.A., Al-Waeli, A.H.A., Sopian, K.: Controlling the melting and solidification points temperature of pcms on the performance and economic return of the water-cooled photovoltaic thermal system. Sol. Energy 224, 1344–1357 (2021)

    Article  Google Scholar 

  57. Asefi, G., Ma, T., Wang, R.: Parametric investigation of photovoltaic-thermal systems integrated with porous phase change material. Appl. Therm. Eng. 201, 117727 (2022)

    Article  Google Scholar 

  58. Islam, M.M., Hasanuzzaman, M., Rahim, N.A., Pandey, A.K., Rawa, M., Kumar, L.: Real time experimental performance investigation of a nepcm based photovoltaic thermal system: an energetic and exergetic approach. Renew. Energy 172, 71–87 (2021)

    Article  Google Scholar 

  59. Song, J., Sobhani, B.: Energy and exergy performance of an integrated desiccant cooling system with photovoltaic/thermal using phase change material and maisotsenko cooler. J. Energy Storage. 32, 101698 (2020)

    Article  Google Scholar 

  60. Das, D., Bordoloi, U., Kamble, A.D., Muigai, H.H., Pai, R.K., Kalita, P.: Performance investigation of a rectangular spiral flow PV/T collector with a novel form-stable composite material. Appl. Therm. Eng. 182, 116035 (2021)

    Article  Google Scholar 

  61. Abdelrazik, A.S., Al-Sulaiman, F.A., Saidur, R.: Numerical investigation of the effects of the nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/thermal systems. Energy Convers. Manage. 205, 112449 (2020)

    Article  Google Scholar 

  62. Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A., Javaid, N.: Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system. Renew. Energy 145, 282–293 (2020)

    Article  Google Scholar 

  63. Al-Waeli, A.H.A., Sopian, K., Chaichan, M.T., Kazem, H.A., Ibrahim, A., Mat, S., Ruslan, M.H.: Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers. Manage. 151, 693–708 (2017)

    Article  Google Scholar 

  64. Eisapour, M., Eisapour, A.H., Hosseini, M.J., Talebizadehsardari, P.: Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid. Appl. Energy. 266, 114849 (2020)

    Article  Google Scholar 

  65. Amanlou, Y., Tavakoli Hashjin, T., Ghobadian, B., Najafi, G.: Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate. Appl. Therm. Eng. 141, 413–421 (2018)

    Article  Google Scholar 

  66. Karathanassis, I.K., Papanicolaou, E., Belessiotis, V., Bergeles, G.C.: Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling. Renew. Energy 101, 467–483 (2017)

    Article  Google Scholar 

  67. Haiping, C., Jiguang, H., Heng, Z., Kai, L., Haowen, L., Shuangyin, L.: Experimental investigation of a novel low concentrating photovoltaic/thermal–thermoelectric generator hybrid system. Energy 166, 83–95 (2019)

    Article  Google Scholar 

  68. Haiping, C., Xinxin, G., Heng, Z., Yang, L., Haowen, L., Yuegang, B.: Experimental study on a flash tank integrated with low concentrating PV/T (FT-LCPVT) hybrid system for desalination. Appl. Therm. Eng. 159, 113874 (2019)

    Article  Google Scholar 

  69. Alayi, R., Kasaeian, A., Atabi, F.: Optical modeling and optimization of parabolic trough concentration photovoltaic/thermal system. Environ. Progress Sustain. Energy. 39, e13303 (2020)

    Article  Google Scholar 

  70. Elminshawy, N.A.S., El-Ghandour, M., Elhenawy, Y., Bassyouni, M., El-Damhogi, D.G., Addas, M.F.: Experimental investigation of a v-trough PV concentrator integrated with a buried water heat exchanger cooling system. Sol. Energy 193, 706–714 (2019)

    Article  Google Scholar 

  71. Wu, G., Yang, Q., Zhang, Y., Fang, H., Feng, C., Zheng, H.: Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved fresnel lens inside a chinese solar greenhouse. Energy 197, 117215 (2020)

    Article  Google Scholar 

  72. Afzali Gorouh, H., Salmanzadeh, M., Nasseriyan, P., Hayati, A., Cabral, D., Gomes, J., Karlsson, B.: Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator. Renew. Energy. 181, 535–553 (2022)

    Article  Google Scholar 

  73. Radwan, A., Ahmed, M., Ookawara, S.: Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Convers. Manage. 119, 289–303 (2016)

    Article  Google Scholar 

  74. Han, X., Xiaobo, Z., Xiaobin, C.: Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renew. Energy (2020)

  75. Amirreza Moaleman, A.K., Aramesh, M., Mahian, O., Lovedeep Sahota, G.N.T.: Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system. Energy Convers. Manage. 160, 191–208 (2018)

    Article  Google Scholar 

  76. Liu, Y., Zhang, H., Chen, H.: Experimental study of an indirect-expansion heat pump system based on solar low-concentrating photovoltaic/thermal collectors. Renew. Energy 157, 718–730 (2020)

    Article  Google Scholar 

  77. Deymi-Dashtebayaz, M., Rezapour, M., Farahnak, M.: Modeling of a novel nanofluid-based concentrated photovoltaic thermal system coupled with a heat pump cycle (CPVT-HP). Appl. Therm. Eng.. 201, 117765 (2022)

    Article  Google Scholar 

  78. Shittu, S., Li, G., Zhao, X., Akhlaghi, Y.G., Ma, X., Yu, M.: Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Convers. Manage. 193, 1–14 (2019)

    Article  Google Scholar 

  79. Cui, T., Xuan, Y., Li, Q.: Design of a novel concentrating photovoltaic–thermoelectric system incorporated with phase change materials. Energy Convers. Manage. 112, 49–60 (2016)

    Article  Google Scholar 

  80. Su, Y., Zhang, Y., Shu, L.: Experimental study of using phase change material cooling in a solar tracking concentrated photovoltaic-thermal system. Sol. Energy 159, 777–785 (2018)

    Article  Google Scholar 

  81. Chandrasekar, M., Gopal, P., Ramesh Kumar, C., Edwin Geo V.: Effect of solar photovoltaic and various photovoltaic air thermal systems on hydrogen generation by water electrolysis. Int. J. Hydrog. Energy. (2021)

  82. Podder, B., Biswas, A., Saha, S.: Multi-objective optimization of a small sized solar PV-T water collector using controlled elitist NSGA-II coupled with topsis. Sol. Energy 230, 688–702 (2021)

    Article  Google Scholar 

  83. Dupeyrat, P., Ménézo, C., Fortuin, S.: Study of the thermal and electrical performances of pvt solar hot water system. Energy and Build. 68, 751–755 (2014)

    Article  Google Scholar 

  84. Assoa, Y.B., Menezo, C., Fraisse, G., Yezou, R., Brau, J.: Study of a new concept of photovoltaic–thermal hybrid collector. Sol. Energy 81, 1132–1143 (2007)

    Article  Google Scholar 

  85. Yu, M., Chen, F., Zheng, S., Zhou, J., Zhao, X., Wang, Z., Li, G., Li, J., Fan, Y., Ji, J., Diallo, T.M.O., Hardy, D.: Experimental investigation of a novel solar micro-channel loop-heat-pipe photovoltaic/thermal (MC-LHP-PV/T) system for heat and power generation. Appl. Energy. 256, 113929 (2019)

    Article  Google Scholar 

  86. Dupeyrat, P., Ménézo, C., Rommel, M., Henning, H.-M.: Efficient single glazed flat plate photovoltaic–thermal hybrid collector for domestic hot water system. Sol. Energy 85, 1457–1468 (2011)

    Article  Google Scholar 

  87. Shahsavar, A., Ameri, M.: Experimental investigation and modeling of a direct-coupled PV/T air collector. Sol. Energy 84, 1938–1958 (2010)

    Article  Google Scholar 

  88. Singh, S., Agarwal, S., Tiwari, G.N., Chauhan, D.: Application of genetic algorithm with multi-objective function to improve the efficiency of glazed photovoltaic thermal system for new delhi (India) climatic condition. Sol. Energy 117, 153–166 (2015)

    Article  Google Scholar 

  89. Slimani, M.E.A., Amirat, M., Kurucz, I., Bahria, S., Hamidat, A., Chaouch, W.B.: A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: comparative study under algiers climatic conditions. Energy Convers. Manage. 133, 458–476 (2017)

    Article  Google Scholar 

  90. Mojumder, J.C., Chong, W.T., Ong, H.C., Leong, K.Y., Abdullah Al, M.: An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy Build. 130, 272–285 (2016)

    Article  Google Scholar 

  91. Fan, W., Kokogiannakis, G., Ma, Z., Cooper, P.: Development of a dynamic model for a hybrid photovoltaic thermal collector—solar air heater with fins. Renew. Energy 101, 816–834 (2017)

    Article  Google Scholar 

  92. Wu, S.-Y., Wang, T., Xiao, L., Shen, Z.-G.: Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled pv/t system. Sol. Energy 180, 489–500 (2019)

    Article  Google Scholar 

  93. Widyolar, B., Jiang, L., Brinkley, J., Hota, S.K., Ferry, J., Diaz, G., Winston, R.: Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics. Appl. Energy. 268, 114894 (2020)

    Article  Google Scholar 

  94. Bhattarai, S., Oh, J.-H., Euh, S.-H., Krishna, K.G., HyunKim, D.: Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Mater. Solar Cells. 103, 184–193 (2012)

    Article  Google Scholar 

  95. Nualboonrueng, T., Tuenpusa, P., Ueda, Y., Akisawa, A.: Field experiments of pv-thermal collectors for residential application in bangkok. Energies 5, 1229–1244 (2012)

    Article  Google Scholar 

  96. Künnemeyer, R., Anderson, T.N., Duke, M., Carson, J.K.: Performance of a v-trough photovoltaic/thermal concentrator. Sol. Energy 101, 19–27 (2014)

    Article  Google Scholar 

  97. TamayoVera, J., Laukkanen, T., Sirén, K.: Performance evaluation and multi-objective optimization of hybrid photovoltaic–thermal collectors. Sol. Energy. 102, 223–233 (2014)

    Article  Google Scholar 

  98. Rahou, M., Othman, M. Y., Mat, S., Ibrahim, A.: Performance study of a photovoltaic thermal system with an oscillatory flow design. J. Sol. Energy Eng. 136: (2014)

  99. Lämmle, M., Kroyer, T., Fortuin, S., Wiese, M., Hermann, M.: Development and modelling of highly-efficient pvt collectors with low-emissivity coatings. Sol. Energy 130, 161–173 (2016)

    Article  Google Scholar 

  100. Singh, D.B., Tiwari, G.N.: Performance analysis of basin type solar stills integrated with n identical photovoltaic thermal (PVT) compound parabolic concentrator (CPC) collectors: a comparative study. Sol. Energy 142, 144–158 (2017)

    Article  Google Scholar 

  101. Nahar, A., Hasanuzzaman, M., Rahim, N. A.: A three-dimensional comprehensive numerical investigation of different operating parameters on the performance of a photovoltaic thermal system with pancake collector. J. Sol. Energy Eng. 139: (2017)

  102. Nahar, A., Hasanuzzaman, M., Rahim, N.A.: Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in malaysia. Sol. Energy 144, 517–528 (2017)

    Article  Google Scholar 

  103. Selimli, S., Dumrul, H., Yilmaz, S., Akman, O.: Experimental and numerical analysis of energy and exergy performance of photovoltaic thermal water collectors. Sol. Energy 228, 1–11 (2021)

    Article  Google Scholar 

  104. Zhou, J., Zhao, X., Yuan, Y., Fan, Y., Li, J.: Mathematical and experimental evaluation of a mini-channel PV/T and thermal panel in summer mode. Sol. Energy 224, 401–410 (2021)

    Article  Google Scholar 

  105. Zaite, A., Belouaggadia, N., Abid, C., Ezzine, M.: Performance improvement of photovoltaic cells using night radiative cooling technology in a PV/T collector. J. Build. Eng. 42, 102843 (2021)

    Article  Google Scholar 

  106. Zabihi Sheshpoli, A., Jahanian, O., Nikzadfar, K., Aghajani Delavar, M.: Numerical and experimental investigation on the performance of hybrid PV/thermal systems in the north of iran. Sol. Energy 215, 108–120 (2021)

    Article  Google Scholar 

  107. Veeramanikandan, M., Sathish, D., Jeryrajkumar, L., Boovendravarman, S.: Effective study on developments in photovoltaic thermal (PV/T) water heating system. Mater. Today Proc. 42, 584–589 (2021)

    Article  Google Scholar 

  108. Rahaei, A., Rafee, R., Zargarabadi, M.R.: A photovoltaic thermal system with a complete contact between water and pv modules suitable for district heating and electric power generation. Sustain. Energy Technol. Assessm. 47, 101325 (2021)

    Google Scholar 

  109. Salameh, T., Tawalbeh, M., Juaidi, A., Abdallah, R., Hamid, A.-K.: A novel three-dimensional numerical model for PV/T water system in hot climate region. Renew. Energy 164, 1320–1333 (2021)

    Article  Google Scholar 

  110. Chandan, S.V., Iqbal, S.M., Reddy, K.S., Pesala, B.: 3-D numerical modelling and experimental investigation of coupled photovoltaic thermal and flat plate collector. Sol. Energy 224, 195–209 (2021)

    Article  Google Scholar 

  111. Sandnes, B., Rekstad, J.: A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model. Sol. Energy. 72, 63–73 (2002)

    Article  Google Scholar 

  112. Chow, T.T., He, W., Ji, J.: Hybrid photovoltaic-thermosyphon water heating system for residential application. Sol. Energy 80, 298–306 (2006)

    Article  Google Scholar 

  113. Dubey, S., Tiwari, G.N.: Analysis of PV/T flat plate water collectors connected in series. Sol. Energy 83, 1485–1498 (2009)

    Article  Google Scholar 

  114. Dupeyrat, P., Ménézo, C., Wirth, H., Rommel, M.: Improvement of PV module optical properties for PV-thermal hybrid collector application. Sol. Energy Mater. Sol. Cells 95, 2028–2036 (2011)

    Article  Google Scholar 

  115. Lebbi, M., Touafek, K., Benchatti, A., Boutina, L., Khelifa, A., Taher Baissi M., Hassani, S.: Energy performance improvement of a new hybrid PV/T bi-fluid system using active cooling and self-cleaning: Experimental study. Appl. Therm. Eng. 116033 (2020)

  116. Barbu, M., Siroux, M., Darie, G.: Numerical model and parametric analysis of a liquid based hybrid photovoltaic thermal (PVT) collector. Energy Reports. (2021)

  117. Saroha, S., Mittal, T., Modi, P.J., Bhalla, V., Khullar, V., Tyagi, H., Taylor, R. A., Otanicar, T. P.: Theoretical analysis and testing of nanofluids-based solar photovoltaic/thermal hybrid collector. J. Heat Transfer 137: (2015)

  118. Ghadiri, M., Sardarabadi, M., Pasandideh-fard, M., Moghadam, A.J.: Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers. Manage. 103, 468–476 (2015)

    Article  Google Scholar 

  119. Khanjari, Y., Pourfayaz, F., Kasaeian, A.B.: Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Convers. Manage. 122, 263–278 (2016)

    Article  Google Scholar 

  120. Rejeb, O., Sardarabadi, M., Ménézo, C., Passandideh-Fard, M., Dhaou, M.H., Jemni, A.: Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Convers. Manage. 110, 367–377 (2016)

    Article  Google Scholar 

  121. Jidhesh, P., Arjunan, T.V., Gunasekar, N.: Thermal modeling and experimental validation of semitransparent photovoltaic- thermal hybrid collector using cuo nanofluid. J. Clean. Prod. 316, 128360 (2021)

    Article  Google Scholar 

  122. Ould-Lahoucine, C., Ramdani, H., Zied, D.: Energy and exergy performances of a TIO2-water nanofluid-based hybrid photovoltaic/thermal collector and a proposed new method to determine the optimal height of the rectangular cooling channel. Sol. Energy 221, 292–306 (2021)

    Article  Google Scholar 

  123. Shahsavar, A., Jha, P., Arici, M., Kefayati, G.: A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors. Energy 220, 119714 (2021)

    Article  Google Scholar 

  124. Taheri, A., Malayjerdi, M., Kazemi, M., Kalani, H., Nemati-Farouji, R., Passandideh-Fard, M., Sardarabadi, M.: Improving the performance of a nanofluid-based photovoltaic thermal module utilizing dual-axis solar tracker system: Experimental examination and thermodynamic analysis. Appl. Therm. Eng. 196, 117178 (2021)

    Article  Google Scholar 

  125. Shahsavar, A.: Experimental evaluation of energy and exergy performance of a nanofluid-based photovoltaic/thermal system equipped with a sheet-and-sinusoidal serpentine tube collector. J. Clean. Prod. 287, 125064 (2021)

    Article  Google Scholar 

  126. Maadi, S.R., Navegi, A., Solomin, E., Ahn, H.S., Wongwises, S., Mahian, O.: Performance improvement of a photovoltaic-thermal system using a wavy-strip insert with and without nanofluid. Energy 234, 121190 (2021)

    Article  Google Scholar 

  127. Cai, J., Ji, J., Wang, Y., Zhou, F., Yu, B.: A novel pv/t-air dual source heat pump water heater system: dynamic simulation and performance characterization. Energy Convers. Manage. 148, 635–645 (2017)

    Article  Google Scholar 

  128. Zhou, J., Zhao, X., Yuan, Y., Li, J., Yu, M., Fan, Y.: Operational performance of a novel heat pump coupled with mini-channel pv/t and thermal panel in low solar radiation. Energy Built Environment. 1, 50–59 (2020)

    Article  Google Scholar 

  129. Yao, J., Xu, H., Dai, Y., Huang, M.: Performance analysis of solar assisted heat pump coupled with build-in pcm heat storage based on pv/t panel. Sol. Energy 197, 279–291 (2020)

    Article  Google Scholar 

  130. Zhou, J., Ma, X., Zhao, X., Yuan, Y., Yu, M., Li, J.: Numerical simulation and experimental validation of a micro-channel PV/T modules based direct-expansion solar heat pump system. Renew. Energy 145, 1992–2004 (2020)

    Article  Google Scholar 

  131. Song, Z., Ji, J., Cai, J., Li, Z., Yu, B.: The performance comparison of the direct-expansion solar assisted heat pumps with three different pv evaporators. Energy Convers. Manage. 213, 112781 (2020)

    Article  Google Scholar 

  132. Koşan, M., Demirtaş, M., Aktaş, M., Dişli, E.: Performance analyses of sustainable PV/T assisted heat pump drying system. Sol. Energy 199, 657–672 (2020)

    Article  Google Scholar 

  133. Yao, J., Zheng, S., Chen, D., Dai, Y., Huang, M.: Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region. Energy 219, 119636 (2021)

    Article  Google Scholar 

  134. Gang, P., Huide, F., Huijuan, Z., Jie, J.: Performance study and parametric analysis of a novel heat pipe PV/T system. Energy 37, 384–395 (2012)

    Article  Google Scholar 

  135. Moradgholi, M., Nowee, S.M., Abrishamchi, I.: Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Sol. Energy 107, 82–88 (2014)

    Article  Google Scholar 

  136. Zhang, B., Lv, J., Yang, H., Li, T., Ren, S.: Performance analysis of a heat pipe PV/T system with different circulation tank capacities. Appl. Therm. Eng. 87, 89–97 (2015)

    Article  Google Scholar 

  137. Brahim, T., Jemni, A.: Parametric study of photovoltaic/thermal wickless heat pipe solar collector. Energy Convers. Manage. 239, 114236 (2021)

    Article  Google Scholar 

  138. Diallo, T.M.O., Yu, M., Zhou, J., Zhao, X., Shittu, S., Li, G., Ji, J., Hardy, D.: Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy 167, 866–888 (2019)

    Article  Google Scholar 

  139. Zhang, T., Pei, G., Zhu, Q., Ji, J.: Experimental study of a novel photovoltaic solar-assisted heat pump/loop heat-pipe (PV-SAHP/LHP) system. IOP Conf. Ser. Earth Environ. Sci. 52, 012017 (2017)

    Article  Google Scholar 

  140. Huide, F., Tao, Z.: Performance analysis of an integrated solar-assisted heat pump system with heat pipe PV/T collectors operating under different weather conditions. Energy Procedia. 105, 1143–1148 (2017)

    Article  Google Scholar 

  141. Yang, X., Sun, L., Yuan, Y., Zhao, X., Cao, X.: Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renew. Energy 119, 152–159 (2018)

    Article  Google Scholar 

  142. Yuan, W., Ji, J., Modjinou, M., Zhou, F., Li, Z., Song, Z., Huang, S., Zhao, X.: Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material. Appl. Energy 232, 715–727 (2018)

    Article  Google Scholar 

  143. Fayaz, H., Rahim, N.A., Hasanuzzaman, M., Nasrin, R., Rivai, A.: Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM. Renew. Energy 143, 827–841 (2019)

    Article  Google Scholar 

  144. Shastry, D.M.C., Arunachala, U.C.: Thermal management of photovoltaic module with metal matrix embedded PCM. J. Energy Storage. 28, 101312 (2020)

    Article  Google Scholar 

  145. Sopian, K., Al-Waeli, A.H.A., Kazem, H.A.: Energy, exergy and efficiency of four photovoltaic thermal collectors with different energy storage material. J. Energy Storage. 29, 101245 (2020)

    Article  Google Scholar 

  146. Kazemian, A., Salari, A., Ma, T.: A year-round study of a photovoltaic thermal system integrated with phase change material in shanghai using transient model. Energy Convers. Manage. 210, 112657 (2020)

    Article  Google Scholar 

  147. Xu, H., Zhang, C., Wang, N., Qu, Z., Zhang, S.: Experimental study on the performance of a solar photovoltaic/thermal system combined with phase change material. Sol. Energy 198, 202–211 (2020)

    Article  Google Scholar 

  148. Abdelrazik, A.S., Saidur, R., Al-Sulaiman, F.A.: Thermal regulation and performance assessment of a hybrid photovoltaic/thermal system using different combinations of nano-enhanced phase change materials. Sol. Energy Mater. Sol. Cells. 215, 110645 (2020)

    Article  Google Scholar 

  149. Ahmadi, R., Monadinia, F., Maleki, M.: Passive/active photovoltaic-thermal (PVT) system implementing infiltrated phase change material (PCM) in PS-CNT foam. Sol. Energy Mater. Solar Cells. 222, 110942 (2021)

    Article  Google Scholar 

  150. Navakrishnan, S., Vengadesan, E., Senthil, R., Dhanalakshmi, S.: An experimental study on simultaneous electricity and heat production from solar PV with thermal energy storage. Energy Convers. Manage. 245, 114614 (2021)

    Article  Google Scholar 

  151. Hosseinzadeh, M., Sardarabadi, M., Passandideh-Fard, M.: Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy 147, 636–647 (2018)

    Article  Google Scholar 

  152. Naghdbishi, A., Yazdi, M.E., Akbari, G.: Experimental investigation of the effect of multi-wall carbon nanotube—water/glycol based nanofluids on a pvt system integrated with PCM-covered collector. Appl. Therm. Eng. 178, 115556 (2020)

    Article  Google Scholar 

  153. Salari, A., Kazemian, A., Ma, T., Hakkaki-Fard, A., Peng, J.: Nanofluid based photovoltaic thermal systems integrated with phase change materials: numerical simulation and thermodynamic analysis. Energy Convers. Manage. 205, 112384 (2020)

    Article  Google Scholar 

  154. Yazdanifard, F., Ameri, M., Taylor, R.A.: Numerical modeling of a concentrated photovoltaic/thermal system which utilizes a PCM and nanofluid spectral splitting. Energy Convers. Manage. 215, 112927 (2020)

    Article  Google Scholar 

  155. Khodadadi, M., Sheikholeslami, M.: Numerical simulation on the efficiency of PVT system integrated with PCM under the influence of using fins. Sol. Energy Mater. Sol. Cells. 233, 111402 (2021)

    Article  Google Scholar 

  156. Fu, Z., Liang, X., Li, Y., Li, L., Zhu, Q.: Performance improvement of a PVT system using a multilayer structural heat exchanger with PCMs. Renew. Energy 169, 308–317 (2021)

    Article  Google Scholar 

  157. Fu, Z., Li, Y., Liang, X., Lou, S., Qiu, Z., Cheng, Z., Zhu, Q.: Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs. Energy 228, 120509 (2021)

    Article  Google Scholar 

  158. Riahi, A., Ali, A.B.H., Fadhel, A., Guizani, A., Balghouthi, M.: Performance investigation of a concentrating photovoltaic thermal hybrid solar system combined with thermoelectric generators. Energy Convers. Manage. 205, 112377 (2020)

    Article  Google Scholar 

Download references

Funding

Science,Technology & Innovation Funding Authority (STDF) in cooperation with Egyptian Knowledge Bank(EKB)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ghazy.

Ethics declarations

Conflict of Interest

The authors whose names are listed immediately below certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Authors names:

Mohamed Ghazy.

E.M.M. Ibrahim.

A. S. A. Mohamed.

Ahmed A. Askalany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazy, M., Ibrahim, E.M.M., Mohamed, A.S.A. et al. Cooling technologies for enhancing photovoltaic–thermal (PVT) performance: a state of the art. Int J Energy Environ Eng 13, 1205–1235 (2022). https://doi.org/10.1007/s40095-022-00491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00491-8

Keywords

Navigation