Skip to main content
Log in

Bio-oil hydrodeoxygenation over zeolite-based catalyst: the effect of zeolite activation and nickel loading on product characteristics

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

Bio-oil, as an alternative to fossil fuel, is unstable as it contains high levels of oxygenated compounds that affect the quality and stability, especially on the physicochemical properties and stability of its constituent components. Efforts to strengthen bio-oil need to be done to improve the quality and performance as biofuel. One of the most developed methods is hydrodeoxygenation (HDO). In this study, the effort to upgrade bio-oil via hydrodeoxygenation method was carried out by using bifunctional zeolite-based catalysts activated by various concentrations of mineral acids and Ni metal impregnation. HDO was carried out in a fixed-bed system reactor with 1:40 catalyst-to-bio-oil ratio at 250 °C for 2 h. Ni/B3 showed better performance among other catalysts in improving the quality of bio-oil—observed from high HHV (up to 21 MJ/kg), low water content (up to 13%), and a high degree of deoxygenation (88%). In addition, carboxylic acid as the main component of bio-oil had reduced significantly due to the occurrence of ketonization that produced ketones and decarboxylation, and released CO2 gas. Meanwhile, the increase in phenol levels indicated the hydrogenation of methoxy phenol during HDO reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ding Y, Shan B, Cao X, Liu Y, Huang M, Tang B (2020) J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.125586.

  2. Kumar, R., Strezov, V., Kan, T., Weldekidan, H., He, J., Jahan, S.: Investigating the effect of mono- and bimetallic/zeolite catalysts on hydrocarbon production during bio-oil upgrading from ex situ pyrolysis of biomass. Energy Fuels 34, 389–400 (2020). https://doi.org/10.1021/acs.energyfuels.9b02724

    Article  Google Scholar 

  3. Chen, X., Che, Q., Li, S., Liu, Z., Yang, H., Chen, Y., Wang, X., Shao, J., Chen, H.: Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process Technol 196, 106180 (2019). https://doi.org/10.1016/j.fuproc.2019.106180

    Article  Google Scholar 

  4. Patel, M., Kumar, A.: Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review. Renew Sustain Energy Rev 58, 1293–1307 (2016). https://doi.org/10.1016/j.rser.2015.12.146

    Article  Google Scholar 

  5. Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A.: Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int J Hydrogen Energy 45, 18275–18288 (2020). https://doi.org/10.1016/j.ijhydene.2019.05.132

    Article  Google Scholar 

  6. Sari, R.M., Gea, S., Wirjosentono, B., Hendrana, S.: Improving quality and yield production of coconut shell charcoal through a modified pyrolysis reactor with tar scrubber to reduce smoke pollution. Pol J Environ Stud 29, 1–10 (2020). https://doi.org/10.15244/pjoes/110582

    Article  Google Scholar 

  7. Zhang, L., Bao, Z., Xia, S., Lu, Q., Walters, K.B.: Catalytic pyrolysis of biomass and polymer wastes. Catalysts (2018). https://doi.org/10.3390/catal8120659

    Article  Google Scholar 

  8. Jensen, M.M., Djajadi, D.T., Torri, C., Rasmussen, H.B., Madsen, R.B., Venturini, E., Vassura, I., Becker, J., Iversen, B.B., Meyer, A.S., Jørgensen, H., Fabbri, D., Glasius, M.: Hydrothermal liquefaction of enzymatic hydrolysis lignin: biomass pretreatment severity affects lignin valorization. ACS Sustain Chem Eng 6, 5940–5949 (2018). https://doi.org/10.1021/acssuschemeng.7b04338

    Article  Google Scholar 

  9. Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38, 68–94 (2012). https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  10. Auersvald, M., Shumeiko, B., Staš, M., Kubička, D., Chudoba, J., Šimáček, P.: Quantitative study of straw bio-oil hydrodeoxygenation over a sulfided NiMo catalyst. ACS Sustain Chem Eng 7, 7080–7093 (2019). https://doi.org/10.1021/acssuschemeng.8b06860

    Article  Google Scholar 

  11. Tao, J., Li, C., Li, J., Yan, B., Chen, G., Cheng, Z., Li, W., Lin, F., Hou, L.: Multi-step separation of different chemical groups from the heavy fraction in biomass fast pyrolysis oil. Fuel Process Technol 202, 106366 (2020). https://doi.org/10.1016/j.fuproc.2020.106366

    Article  Google Scholar 

  12. Mu, W., Ben, H., Ragauskas, A., Deng, Y.: Lignin pyrolysis components and upgrading. Technol Rev (2013). https://doi.org/10.1007/s12155-013-9314-7

    Article  Google Scholar 

  13. Fan L, Zhang Y, Liu S, Zhou N, Chen P, Addy M, Lu Q, Omar MM, Liu Y, Dai L, Anderson E, Peng P, Lei H, Ruan R (2017) Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Bioresour Technol (2017)

  14. Si, Z., Zhang, X., Wang, C., Ma, L., Dong, R.: An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts 7, 1–22 (2017). https://doi.org/10.3390/catal7060169

    Article  Google Scholar 

  15. Yang, Z., Kumar, A., Huhnke, R.L.: Review of recent developments to improve storage and transportation stability of bio-oil. Renew Sustain Energy Rev 50, 859–870 (2015). https://doi.org/10.1016/j.rser.2015.05.025

    Article  Google Scholar 

  16. Yu, S., Wu, S., Li, L., Ge, X.: Upgrading bio-oil from waste cooking oil by esterification using SO42−/ZrO2 as catalyst. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.118019

    Article  Google Scholar 

  17. Bui, T.V., Sooknoi, T., Resasco, D.E.: Simultaneous upgrading of furanics and phenolics through hydroxyalkylation/aldol condensation reactions. Chemsuschem 10, 1631–1639 (2017). https://doi.org/10.1002/cssc.201601251

    Article  Google Scholar 

  18. Snell, R.W., Shanks, B.H.: CeMOx-promoted ketonization of biomass-derived carboxylic acids in the condensed phase. ACS Catal 4, 512–518 (2014). https://doi.org/10.1021/cs400851j

    Article  Google Scholar 

  19. Gea, S., Haryono, A., Andriayani, A., Sihombing, J.L., Pulungan, A.N., Nasution, T., Rahayu, R., Hutapea, Y.A.: The stabilization of liquid smoke through hydrodeoxygenation over nickel catalyst loaded on sarulla natural zeolite. Appl Sci (2020). https://doi.org/10.3390/APP10124126

    Article  Google Scholar 

  20. Zhang, X., Wang, T., Ma, L., Zhang, Q., Jiang, T.: Hydrotreatment of bio-oil over Ni-based catalyst. Bioresour Technol 127, 306–311 (2013). https://doi.org/10.1016/j.biortech.2012.07.119

    Article  Google Scholar 

  21. Benés, M., Bilbao, R., Santos, J.M., Alves Melo, J., Wisniewski, A., Fonts, I.: Hydrodeoxygenation of lignocellulosic fast pyrolysis bio-oil: characterization of the products and effect of the catalyst loading ratio. Energy Fuels 33, 4272–4286 (2019). https://doi.org/10.1021/acs.energyfuels.9b00265

    Article  Google Scholar 

  22. Oh, S., Hwang, H., Choi, H.S., Choi, J.W.: The effects of noble metal catalysts on the bio-oil quality during the hydrodeoxygenative upgrading process. Fuel 153, 535–543 (2015). https://doi.org/10.1016/j.fuel.2015.03.030

    Article  Google Scholar 

  23. Kim, S., Kwon, E.E., Kim, Y.T., Jung, S., Kim, H.J., Huber, G.W., Lee, J.: Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem 21, 3715–3743 (2019). https://doi.org/10.1039/c9gc01210a

    Article  Google Scholar 

  24. Cheng, S., Wei, L., Julson, J., Muthukumarappan, K., Kharel, P.R.: Upgrading pyrolysis bio-oil to biofuel over bifunctional Co-Zn/HZSM-5 catalyst in supercritical methanol. Energy Convers Manag 147, 19–28 (2017). https://doi.org/10.1016/j.enconman.2017.05.044

    Article  Google Scholar 

  25. Cheng, S., Wei, L., Zhao, X., Kadis, E., Cao, Y., Julson, J., Gu, Z.: Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals, N. Biotechnology 33, 440–448 (2016). https://doi.org/10.1016/j.nbt.2016.02.004

    Article  Google Scholar 

  26. Shafaghat, H., Kim, J.M., Lee, I.G., Jae, J., Jung, S.C., Park, Y.K.: Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts. Renew Energy (2019). https://doi.org/10.1016/j.renene.2018.06.096

    Article  Google Scholar 

  27. Sihombing, J.L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A.N., Herlinawati, H., Yusuf, M.: Characteristic and catalytic performance of Co and Co-Mo metal impregnated in sarulla natural zeolite catalyst for hydrocracking of mefa rubber seed oil into biogasoline fraction. Catalysts 10, 121 (2020)

    Article  Google Scholar 

  28. Nwankwor, P.E., Onuigbo, I.O., Chukwuneke, C.E., Falalu, M., Agboola, B.O., Jin, W.: Synthesis of gasoline range fuels by the catalytic cracking of waste plastics using titanium dioxide and zeolite. Int J Energy Environ Eng (2020). https://doi.org/10.1007/s40095-020-00359-9

    Article  Google Scholar 

  29. Saidi, M., Samimi, F., Karimipourfard, D., Nimmanwudipong, T., Gates, B.C., Rahimpour, M.R.: Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7, 103–129 (2014). https://doi.org/10.1039/c3ee43081b

    Article  Google Scholar 

  30. Xu, X., Jiang, E., Li, Z., Sun, Y.: BTX from anisole by hydrodeoxygenation and transalkylation at ambient pressure with zeolite catalysts. Fuel 221, 440–446 (2018). https://doi.org/10.1016/j.fuel.2018.01.033

    Article  Google Scholar 

  31. Li, W., Wang, H., Wu, X., Betancourt, L.E., Tu, C., Liao, M.: Ni/hierarchical ZSM-5 zeolites as promising systems for phenolic bio-oil upgrading: guaiacol hydrodeoxygenation. Fuel 274, 117859 (2020). https://doi.org/10.1016/j.fuel.2020.117859

    Article  Google Scholar 

  32. Sadek, R., Chalupka, K.A., Mierczynski, P., Maniukiewicz, W., Rynkowski, J., Gurgul, J., Lasoń-Rydel, M., Casale, S., Brouri, D., Dzwigaj, S.: The catalytic performance of Ni-Co/Beta zeolite catalysts in Fischer–Tropsch synthesis. Catalysts (2020). https://doi.org/10.3390/catal10010112

    Article  Google Scholar 

  33. Fajar, A.T.N., Nurdin, F.A., Mukti, R.R., Subagjo, C.B., Rasrendra, G.T.M. Kadja.: Synergistic effect of dealumination and ceria impregnation to the catalytic properties of MOR zeolite. Mater Today Chem 17, 100313 (2020). https://doi.org/10.1016/j.mtchem.2020.100313

    Article  Google Scholar 

  34. Wei, L., Haije, W., Kumar, N., Peltonen, J., Peurla, M., Grenman, H., de Jong, W.: Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation. Catal Today 362, 35–46 (2021). https://doi.org/10.1016/j.cattod.2020.05.025

    Article  Google Scholar 

  35. Graça, I., González, L.V., Bacariza, M.C., Fernandes, A., Henriques, C., Lopes, J.M., Ribeiro, M.F.: CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Appl Catal B Environ 147, 101–110 (2014). https://doi.org/10.1016/j.apcatb.2013.08.010

    Article  Google Scholar 

  36. Zsm, A.O., Marinescu, M., Roxana, D., Dorin, P., Vasilievici, G., Rosca, P., Emilia, E., Bolocan, I.: Hydrodeoxygenation and hydrocracking of oxygenated. React Kinet Mech Catal 133, 1013–1026 (2021). https://doi.org/10.1007/s11144-021-02029-1

    Article  Google Scholar 

  37. Reinoso, D., Adrover, M., Pedernera, M.: Green synthesis of nanocrystalline faujasite zeolite. Ultrason Sonochem 42, 303–309 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.034

    Article  Google Scholar 

  38. Inayat, A., Knoke, I., Spiecker, E., Schwieger, W.: Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chemie Int Ed 51, 1962–1965 (2012). https://doi.org/10.1002/anie.201105738

    Article  Google Scholar 

  39. El-bahy, Z.M., Mohamed, M.M., Zidan, F.I., Thabet, M.S.: Photo-degradation of acid green dye over Co–ZSM-5 catalysts prepared by incipient wetness impregnation technique. J Hazard Mater 153, 364–371 (2008). https://doi.org/10.1016/j.jhazmat.2007.08.060

    Article  Google Scholar 

  40. Liu, M., Hou, L., Yu, S., Xi, B., Zhao, Y., Xia, X.: MCM-41 impregnated with A zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chem Eng J 223, 678–687 (2013). https://doi.org/10.1016/j.cej.2013.02.088

    Article  Google Scholar 

  41. Fang, S., Shi, C., Jiang, L., Li, P., Bai, J., Chang, C.: Influence of metal (Fe/Zn) modified ZSM-5 catalysts on product characteristics based on the bench-scale pyrolysis and Py-GC/MS of biomass. Int. J. Energy Res. 44, 5455–5467 (2020). https://doi.org/10.1002/er.5294

    Article  Google Scholar 

  42. Bhavani, A.G., Reddy, N.S., Joshi, B., Sharma, P., Yadav, P.: Enhancing the adsorption capacity of CO2 over modified microporous nano-crystalline zeolite structure. J Sci Res 64, 208–211 (2020). https://doi.org/10.37398/JSR.2020.640229

    Article  Google Scholar 

  43. Bykova, M.V., Ermakov, D.Y., Khromova, S.A., Smirnov, A.A., Lebedev, M.Y., Yakovlev, V.A.: Stabilized Ni-based catalysts for bio-oil hydrotreatment: reactivity studies using guaiacol. Catal Today 220–222, 21–31 (2014). https://doi.org/10.1016/j.cattod.2013.10.023

    Article  Google Scholar 

  44. Li, Y., Zhang, C., Liu, Y., Tang, S., Chen, G., Zhang, R.: Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation. Fuel 189(2017), 23–31 (2017). https://doi.org/10.1016/j.fuel.2016.10.047

    Article  Google Scholar 

  45. Oyedun, A.O., Patel, M., Kumar, M., Kumar, A.: The upgrading of bio-oil via hydrodeoxygenation. Chem Catal Biomass Upgrad (2019). https://doi.org/10.1002/9783527814794.ch2

    Article  Google Scholar 

  46. Pham, H.H., Thuy Nguyen, N., Go, K.S., Park, S., Sun Nho, N., Kim, G.T., Wee Lee, C., Felix, G.: Kinetic study of thermal and catalytic hydrocracking of asphaltene. Catal Today 353, 112–118 (2020). https://doi.org/10.1016/j.cattod.2019.08.031

    Article  Google Scholar 

  47. Han, Y., Gholizadeh, M., Tran, C.C., Kaliaguine, S., Li, C.Z., Olarte, M., Garcia-Perez, M.: Hydrotreatment of pyrolysis bio-oil: a review. Fuel Process Technol (2019). https://doi.org/10.1016/j.fuproc.2019.106140

    Article  Google Scholar 

  48. Sankaranarayanan, T.M., Kreider, M., Berenguer, A., Gutiérrez-Rubio, S., Moreno, I., Pizarro, P., Coronado, J.M., Serrano, D.P.: Cross-reactivity of guaiacol and propionic acid blends during hydrodeoxygenation over Ni-supported catalysts. Fuel 214, 187–195 (2018). https://doi.org/10.1016/j.fuel.2017.10.059

    Article  Google Scholar 

  49. Chen, L., Zhu, Y., Zheng, H., Zhang, C., Zhang, B., Li, Y.: Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. J Mol Catal A Chem 351, 217–227 (2011). https://doi.org/10.1016/j.molcata.2011.10.015

    Article  Google Scholar 

  50. Xu, X., Zhang, C., Liu, Y., Zhai, Y., Zhang, R.: Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels. Chemosphere 93, 652–660 (2013). https://doi.org/10.1016/j.chemosphere.2013.06.060

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Rector of Universitas Sumatera Utara for the research grant to support this research.

Funding

This work was funded by the Rector of Universitas Sumatera Utara under World Class University Program Scheme Year 2020 with a grant number 1879/UN5.1.R/SK/PPM/2020.

Author information

Authors and Affiliations

Authors

Contributions

Saharman Gea contributed to conceptualization, methodology, writing—original draft, and supervision. Irvan was involved in conceptualization, data curation, and supervision. Karna Wijaya contributed to conceptualization, formal analysis, writing—original draft, and supervision. Asma Nadia was involved in writing—review and editing. Ahmad Nasir Pulungan contributed to data curation, investigation, visualization, writing—review and editing. Junifa Layla Sihombing was involved in data curation, investigation, methodology, and visualization. Rahayu contributed to data curation, software, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Saharman Gea or Karna Wijaya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gea, S., Irvan, Wijaya, K. et al. Bio-oil hydrodeoxygenation over zeolite-based catalyst: the effect of zeolite activation and nickel loading on product characteristics. Int J Energy Environ Eng 13, 541–553 (2022). https://doi.org/10.1007/s40095-021-00467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00467-0

Keywords

Navigation