Skip to main content
Log in

Unsteady 3D numerical modeling of polymer electrolyte membrane fuel cell with pin-type flow field with bean-shaped pins

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

A dynamic model for polymer electrolyte membrane (PEM) fuel cell with pin-type flow field with bean-shaped pins is presented to comprehensively investigate the performance of the fuel cell against the operating conditions (temperature, pressure, relative humidity, and stoichiometric flow ratio). A three-dimensional and multi-component numerical model, employing pin-type flow field with bean-shaped pins at the cathode side, is introduced to investigate the transient behavior of fuel cell. Governing equations including the mass, momentum, species, charge, and energy conservation coupled with electrochemical kinetics are solved. The post-processing associated results consist of species concentration and current density distributions in addition to velocity distributions; along with different pin-type flow field patterns, a detailed insight is provided into the transport phenomena within the PEM fuel cell. The results indicated that utilizing pin-type flow field can improve transportation of oxygen into the catalyst layer leading to an increase in the current density average value. Also, the transient time of a fuel cell is about few seconds; the start-up process of the PEM fuel cell is very quick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Water activity in the membrane (m2/m3)

C i :

Concentration of species i (mol/m3

C P :

Specific heat capacity (J/kg.K)

D k :

Diffusion coefficient of species k (m2/S)

F:

Faraday constant (C/mol)

H :

Enthalpy (J)

I:

Current density (A/m2)

J:

Transient current density (A/m3)

K:

Permeability (m2)

k eff :

Effective thermal conductivity (W/m.K)

k s :

Solid phase thermal conductivity (W/m.K)

P:

Pressure (Pa)

R:

General constant of gases (8.314 J/kg molK)

S:

Source term in the conservation equation

T:

Temperature (K)

U:

Velocity (m/s)

X k :

Molar fraction of component k

ɛ :

Porosity

µ :

Viscosity ( Pa.s)

η :

Added potential (V)

ρ :

Density (kg/m3)

\(\Phi _{e}\) :

The electrical potential in the membrane (V)

\(\Phi _{s}\) :

The electrical potential in solid phase (V)

\(\lambda\) :

Constant activity in the membrane

\(\sigma _{k}^{{eff}}\) :

The membrane ionic conductivity coefficient (S/m

References

  1. Manso, A.P., Marzo, F.F., Barranco, J., et al.: Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. Rev. Int. J. Hydrog. Energy 37, 15256–15287 (2012)

    Article  Google Scholar 

  2. Kahraman, H., Orhan, M.F.: Flow field bipolar plates in a proton exchange membrane fuel cell: analysis and modeling. Energy Convers. Manag. 133, 363–384 (2017)

    Article  Google Scholar 

  3. Atyabi, S.A., Afshari, E.: Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side. J. Clean. Prod. 214, 738–748 (2019)

    Article  Google Scholar 

  4. Obayopo, S.O., Bello-Ochende, T., Meyer, J.P.: Modelling and optimization of reactant gas transport in a PEM fuel cell with a transverse pin fin insert in channel flow. Int. J. Hydrog. Energy 37, 10286–10298 (2012)

    Article  Google Scholar 

  5. Yan, W.-M., Li, H.-Y., Weng, W.-C.: Transient mass transport and cell performance of a PEM fuel cell. Int. J. Heat Mass Transf. 107, 646–656 (2017)

    Article  Google Scholar 

  6. Wu, H., Berg, P., Li, X.: Steady and unsteady 3D non-isothermal modeling of PEM fuel cells with the effect of non-equilibrium phase transfer. Appl. Energy 87, 2778–2784 (2010)

    Article  Google Scholar 

  7. Wang, X.-D., Xu, J.-L., Yan, W.-M., et al.: Transient response of PEM fuel cells with parallel and interdigitated flow field designs. Int. J. Heat Mass Transf. 54, 2375–2386 (2011)

    Article  Google Scholar 

  8. van Bussel, H.P.L.H., Koene, F.G.H., Mallant, R.K.A.M.: Dynamic model of solid polymer fuel cell water management. J. Power Sources 71, 218–222 (1998)

    Article  Google Scholar 

  9. Um, S., Wang, C., Chen, K.S.: Computational fluid dynamics modeling of proton exchange membrane fuel cells. J. Electrochem. Soc. 147, 4485 (2000)

    Article  Google Scholar 

  10. Wang, Y., Wang, C.-Y.: Transient analysis of polymer electrolyte fuel cells. Electrochim. Acta 50, 1307–1315 (2005)

    Article  Google Scholar 

  11. Meng, H.: Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model. J. Power Sources 171, 738–746 (2007)

    Article  Google Scholar 

  12. Serincan, M.F., Yesilyurt, S.: Transient analysis of proton electrolyte membrane fuel cells (PEMFC) at start-up and failure. Fuel Cells 7, 118–127 (2007)

    Article  Google Scholar 

  13. Chen, F., Wen, Y.-Z., Chu, H.-S., et al.: Convenient two-dimensional model for design of fuel channels for proton exchange membrane fuel cells. J. Power Sources 128, 125–134 (2004)

    Article  Google Scholar 

  14. Wang, Y., Wang, C.-Y.: Dynamics of polymer electrolyte fuel cells undergoing load changes. Electrochim. Acta 51, 3924–3933 (2006)

    Article  Google Scholar 

  15. Verma, A., Pitchumani, R.: Influence of transient operating parameters on the mechanical behavior of fuel cells. Int. J. Hydrog. Energy 40, 8442–8453 (2015)

    Article  Google Scholar 

  16. Mishra, B., Wu, J.: Study of the effects of various parameters on the transient current density at polymer electrolyte membrane fuel cell start-up. Renew. Energy 34, 2296–2307 (2009)

    Article  Google Scholar 

  17. Taymaz, I., Benli, M.: Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell. Energy 35, 2134–2140 (2010)

    Article  Google Scholar 

  18. Suzuki, A., Hattori, T., Miura, R., et al.: Porosity and Pt content in the catalyst layer of PEMFC: effects on diffusion and polarization characteristics. Int. J. Electrochem. Sci. 5, 1948–1961 (2010)

    Google Scholar 

  19. Houreh, N.B., Afshari, E., Shokouhmand, H., Asghari, S.: Numerical study and experimental validation on heat and water transfer through polymer membrane by applying a novel enhancement technique. J. Energy Storage 29, 101387 (2020)

    Article  Google Scholar 

  20. Cao, J., Djilali, N.: Numerical modeling of PEM fuel cells under partially hydrated membrane conditions. J. Energy Resour. Technol. 127, 26–36 (2005)

    Article  Google Scholar 

  21. Baschuk, J.J., Rowe, A.M., Li, X.: Modeling and simulation of PEM fuel cells with CO poisoning. J. Energy Resour. Technol. 125, 94–100 (2003)

    Article  Google Scholar 

  22. Afshari, E., Jazayeri, S.A.: Analyses of heat and water transport interactions in a proton exchange membrane fuel cell. J. Power Sources (2009). https://doi.org/10.1016/j.jpowsour.2009.04.057

    Article  Google Scholar 

  23. Afshari, E., Jazayeri, S.A.: Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance. Energy Convers. Manag. (2010). https://doi.org/10.1016/j.enconman.2009.11.004

    Article  Google Scholar 

  24. Wu, H.-W.: A review of recent development: transport and performance modeling of PEM fuel cells. Appl. Energy 165, 81–106 (2016)

    Article  Google Scholar 

  25. Dunn, M.L., Taya, M.: The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces. J. Appl. Phys. 73, 1711–1722 (1993)

    Article  Google Scholar 

  26. Toghyani, S., Afshari, E., Baniasadi, E.: Parametric study of a proton exchange membrane compressor for electrochemical hydrogen storage using numerical assessment. J Energy Storage 30, 101469 (2020)

    Article  Google Scholar 

  27. Carton, J.G., Olabi, A.-G.: Three-dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates. Energy 136, 185–195 (2017)

    Article  Google Scholar 

  28. Atyabi, S.A., Afshari, E., Zohravi, E., Udemu, C.M.: Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel. Energy 234, 121247 (2021)

    Article  Google Scholar 

  29. Saeedan, M., Ziaei-Rad, M., Afshari, E.: Numerical thermal analysis of nanofluid flow through the cooling channels of a polymer electrolyte membrane fuel cell filled with metal foam. Int. J. Energy Res. 44(7), 5730–5748 (2020)

    Article  Google Scholar 

  30. Afshari, E., Jahantigh, N., Atyabi, S.A.: PEM Fuel Cells Fundamentals, Advanced Technologies, and Practical Application, Chapter book 429–463 (2022)

  31. Atyabi, S.A., Afshari, E., Wongwises, S., Yan, W.M., Hadjadj, A., Safdari Shadloo, M.: Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances. Energy 179, 490–501 (2019)

    Article  Google Scholar 

  32. Atyabi, S.A., Afshari, E., Jamalabadi, M.Y.A.: Three-dimensional multiphase flow modeling of membrane humidifier for PEM fuel cell application. Int. J. Numer. Meth. Heat Fluid Flow 30(1), 54–74 (2020)

    Article  Google Scholar 

  33. Liu, H., Li, P., Hartz, A., Wang, K.: Effects of geometry/dimensions of gas flow channels and operating conditions on high-temperature PEM fuel cells. Int. J. Energy Environ. Eng. 6, 75–89 (2015)

    Article  Google Scholar 

  34. Abbou, A., Hasnaoui, A.E., Khan, S.S., Yamin, F.: Analysis of the novel dynamic semiempirical model of proton exchange membrane fuel cell by incorporating ambient condition variations. Int. J. Energy Environ. Eng. (2021). https://doi.org/10.1007/s40095-021-00410-3

    Article  Google Scholar 

  35. Mazumder, S., Cole, J.V.: Rigorous 3-D mathematical modeling of PEM fuel cells. J. Electrochem. Soc. 150, A1510–A1517 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Afshari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshari, E., Jahantigh, N., Khayyam, M.H. et al. Unsteady 3D numerical modeling of polymer electrolyte membrane fuel cell with pin-type flow field with bean-shaped pins. Int J Energy Environ Eng 13, 671–682 (2022). https://doi.org/10.1007/s40095-021-00465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00465-2

Keywords

Navigation