Skip to main content

Advertisement

Log in

Abstract

Many countries have installed horizontal large-scale wind turbine (HLSWT) farms for green generation of electricity but unknowing the long-term consequences of this technology. Recent publications have demonstrated that HLSWT can contribute to weather changes and surface warming increasing precipitation rates. Horizontal household small wind turbines (HHSWTs) have been proposed as a sustainable option to reduce the environmental impact in the generation of electricity by wind energy conversion. However, some issues related to the sustainability and high initial costs of blades materials and processing techniques should be overcome to become HHSWT accessible for the population. In this work, an automated computer-aided design process is supplied for the creation of aerodynamically optimized, monolithic, low-cost and sustainable blades for HHSWT. The procedure presented takes into consideration the environmental conditions of the placement area of the windmill, and it is applicable to obtain blades of any length and with any targeted output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

All developed computational codes are included in Appendix.

References

  1. Vinci, G.V., Benzi, R.: Economic complexity: correlations between gross domestic product and fitness. Entropy. 20(10) (2018)

  2. Tummala, A., Velamati, R.K., Sinha, D.K., Indraja, V., Krishna, V.H.: A review on small scale wind turbines. Renew. Sustain. Energy Rev. 56, 1351–1371 (2016)

    Article  Google Scholar 

  3. Gönül, Ö., Duman, A.C., Deveci, K., Güler, Ö.: An assessment of wind energy status, incentive mechanisms and market in Turkey. Eng. Sci. Technol. Int. J. (2021)

  4. Manwell, J., McGowan, J.G., Rogers, A.L.: Wind Energy Explained. Theory, Design and Application, 2nd Edn., Wiley (2009)

  5. Mellado, N.: Análisis estadístico de la velocidad del viento en mazatlán sinaloa. Artículo Rev Análisis Cuantitativo y Estadístico Septiembre 2(4), 288–294 (2015)

    Google Scholar 

  6. Javaid, U., et al.: Fabrication and thermo-mechanical characterization of glass fiber/vinyl ester wind turbine rotor blade. Compos. Part B Eng. 91, 257–266 (2016)

    Article  Google Scholar 

  7. Mishnaevsky, L., Branner, K., Petersen, H.N., Beauson, J., McGugan, M., Sørensen, B.F.: Materials for wind turbine blades: an overview. Materials (Basel) 10(11), 1–24 (2017)

    Article  Google Scholar 

  8. Global wind report 2019 (2020)

  9. Rashedi, A., Sridhar, I., Tseng, K.J.: Multi-objective material selection for wind turbine blade and tower: Ashby’s approach. Mater. Des. 37, 521–532 (2012)

    Article  Google Scholar 

  10. ABB.: Cuaderno de aplicaciones técnicas: plantas eólicas, Barcelona (2010)

  11. Broøndsted, P., Nijssen, R.P.L.: Advances in wind turbine blade design and materials (2013)

  12. Burton, T., Jenkins, N, Bossanyi, E., Scharpe, D., Graham, M.: Wind Energy Handbook, 3rd edn., Vol. 148. Wiley (2021)

  13. Wang, C., Prinn, R.G.: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 10(4), 2053–2061 (2010)

    Article  Google Scholar 

  14. Fiedler, B.H., Bukovsky, M.S.: The effect of a giant wind farm on precipitation in a regional climate model. Environ. Res. Lett. 6(4), 45101 (2011)

    Article  Google Scholar 

  15. Zhu, J., Gu, R.: Aerodynamic and structural integrated optimization design of horizontal-axis wind turbine blades. Energies 9, 66 (2016)

    Article  Google Scholar 

  16. Gorad, S.K.M.P.P., Nikam, S.R.R.A.H. (2015) Optimum and reliable material for wind turbine blade 4(02), 624–627 (2015)

  17. Zangenberg, J., Brøndsted, P., Koefoed, M.: Design of a fibrous composite preform for wind turbine rotor blades. Mater. Des. 56, 635–641 (2014)

    Article  Google Scholar 

  18. Mølholt Jensen, F., Branner, K.: 1—introduction to wind turbine blade design. In: Brøndsted, P., R.P.L.B.T.-A., W.T.B.D., Nijssen, M. (Eds). Woodhead Publishing Series in Energy, Woodhead Publishing, pp 3–28 (2013)

  19. Sakellariou, N.: Current and potential decommissioning scenarios for end-of-life composite wind blades. Energy Syst. 9(4), 981–1023 (2018)

    Article  Google Scholar 

  20. Joustra, J., Flipsen, B., Balkenende, R.: Composites part C: open access structural reuse of wind turbine blades through segmentation. Compos. Part C Open Access 5, 100137 (2021)

    Article  Google Scholar 

  21. Hollaway, L.C.: Advanced fibre-reinforced polymer (FRP) composite materials for sustainable energy technologies, Woodhead Publishing Limited (2013)

  22. Cherrington, R., et al.: Producer responsibility : Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy 47, 13–21 (2012)

    Article  Google Scholar 

  23. Napakadis, N., Ramirez, C., Reynolds, N.: Designing Composite Wind Turbine Blades for Disposal, Recycling or Reuse. Management, Recycling and Reuse of Waste Composites. Woodhead Publishing (2010)

    Google Scholar 

  24. Debnath, K., Singh, I., Dvivedi, A., Kumar, P.: Natural fibre-reinforced polymer composites for wind turbine blades: challenges and opportunities, pp 25–39 (2013)

  25. Varghese, J.T., Sarath Raj, N.S., Jiji, G.: Development of biodegradable composites and investigation of mechanical behaviour. Mater. Today Proc. 38, 3378–3385 (2020)

    Article  Google Scholar 

  26. N.R., An, N.: Fully biodegradable ‘Green’ composites. In: Polymer Composites, pp 431–463 (2013)

  27. Holmes, J.W., Brøndsted, P., Sørensen, B.F. Jiang, Z., Sun, Z., Chen, X.: Development of a bamboo-based composite as a sustainable green material for wind turbine blades, pp 197–210 (2009)

  28. Schaffarczyk, A.P.: Introduction to wind turbine aerodynamics, vol. 38. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  29. Zhu, J., Cai, X., Gu, R.: Aerodynamic and structural integrated optimization design of horizontal-axiswind turbine blades. Energies 9(2), 1–18 (2016)

    Article  Google Scholar 

  30. Muggiasca, S., Taruffi, F., Fontanella, A., Di Carlo, S., Belloli, M.: Aerodynamic and structural strategies for the rotor design of a wind turbine scaled model. Energies (2021)

  31. Wilson, R.E., Lissaman, P.B.S, Walker, S.N.: Aerodynamic performance of wind turbines (1976)

  32. W. C. Tan and K. K. Koay, “Computational and fluid dynamics study for aerofoil,” in National Conference in Mechanical Engineering Research and Postgraduate Studies, 2010, no. December 2010.

  33. Schubel, P., Crossley, R.: Wind turbine blade design. Wind Turb. Technol. (2014)

  34. Çetin, N.S., Yurdusev, M.A., Ata, R., Özdemir, A.: Assessment of optimum tip speed ratio of wind turbines. Math. Comput. Appl. 10(1), 147–154 (2005)

    Google Scholar 

  35. Pradeep, A.V., Prasad, S.V.S., Suryam, L.V., Kumari, P.P.: (2019) A comprehensive review on contemporary materials used for blades of wind turbine. Mater. Today Proc., pp 1–4 (2019)

  36. Thomas, L., Ramachandra, M.: Advanced materials for wind turbine blade- A Review. Mater. Today Proc. 5(1), 2635–2640 (2018)

    Article  Google Scholar 

  37. Rajendran, K., Lin, R., Wall, D.M., Murphy, J.D.: Influential aspects in waste management practices. In: Sustainable Resource Recovery and Zero Waste Approaches, Elsevier B.V., pp 65–78 (2019)

  38. Ghosh, P., Sengupta, S., Singh, L., Sahay, A.: Life cycle assessment of waste-to-bioenergy processes: a review. Bioreactors, INC, pp. 105–122 (2020)

  39. Morán Ji, F.G., Ludueña, L.N., Stocchi, A.L., Basso, A.D.: The driven flow vacuum infusion process: an overview and analytical design, J. Reinf. Plast. Compos.

  40. Crawford, R.J., Kearns, M.P.: Practical Guide to Rotational Moulding, 2nd Edn. Shawbury, Smithers Rapra Technology Ltd. (2012)

  41. Çengel, Y.A.: Transferencia de Calor y Masa, 3rd Edn. McGraw-Hill (2007)

  42. Multon, B., et al.: Etat de l’ art des Aérogénérateurs. L’´Electronique Puissance Vecteur D’optimisation Pour les ´Energies Renouvelables, pp. 97–154 (2002)

  43. Roberts, J.J., Prado, P.O.: Evaluación del Potencial de Generación de Energía Eólica en el Partido de General Pueyrredon. In: The 9th Latin–American Congress on Electricity Generation and Transmission (2011)

  44. Salazar Villanueva, I.: Análisis Dinámico de las Palas de un Aerogenerador en un Túnel de Viento., Instituto Politécnico Nacional (2010)

  45. Medina Noguerón, R.I.: Cálculo Y Diseño De La Pala (Ehecamani) De Un Aerogenerador, Instituto Politécnico Nacional (2011)

  46. Selig, M. S., McGranahan, B.D.: Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines. Collect. ASME Wind Energy Symp. Tech. Pap. AIAA Aerosp. Sci. Meet. Exhib., Dec 2003 (2004)

  47. Giguére, P., Selig, M.S.: New airfoils for small horizontal axis wind turbines. J. Sol. Energy Eng. Trans. ASME 120(2), 108–114 (1998)

    Article  Google Scholar 

  48. Nakahashi, K., et al.: Improvement of aircraft design technology by developing aerodynamics simulation code for whole aircraft configuration using high-order unstructured mesh method, 2007 (2006)

  49. Drela, M.: XFOIL: an analysis and design system for low Reynolds number airfoils. Low Reynolds Num. Aerodyn. 54, 1–12 (1989)

  50. Dasso, G., Perez, M.N., Cáceres, E.A.: Diseño de un Aeroenerador de Baja Potencia, Universidad Nacional de Mar del Plata (2014)

  51. Bastianon, R.A.: Cálculo Y Diseño De la Hélice Óptima Para Turbinas Eólicas (2008)

  52. Sommers, D.M., Maughmer, M.: Theoretical aerodynamic analyses of six airfoils for use on small wind turbines (2002)

  53. Rubiella, C., Hessabi, C.A., Fallah, A.S.: State of the art in fatigue modelling of composite wind turbine blades. Int. J. Fatigue 117, 230–245 (2018)

    Article  Google Scholar 

Download references

Funding

This work was supported by the “Universidad Nacional de Mar del Plata” [15/G575] and the “Agencia Nacional de Promoción Científica y Tecnológica” [PICT-2017–2458].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Eng. Catalina Miranda and LL. The first draft of the manuscript was written by Eng. CM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to L. N. Ludueña.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A. 1. Octave code for airfoil selection

figure a
figure b

A. 2. Aerodynamic zone

A.2.1 OCTAVE code for the aerodynamic optimization

figure c

A.2.2 OCTAVE Code for the offset procedure

figure d
figure e

A.2.3 AOOB Macro

figure f

A.3. Transition zone

A.3.1 Sigmoidal fittings

A.3.1.1 Percentage vs. profile number

$$ y = 119.82 + \frac{{\left( { - 11.99 - 119.82} \right)}}{{1 + e^{{\frac{{\left( {x - 11.68} \right)}}{4.83}}} }} $$

See Fig. 

Fig. 16
figure 16

Percentage as a function of the profile number

16.

A.3.1.2 Chord vs. length

$$ y = 310.48 + \frac{{\left( {168.74 - 310.48} \right)}}{{1 + e^{{\frac{{\left( {x - 11.68} \right)}}{4.83}}} }} $$

See Fig. 

Fig. 17
figure 17

Chord length as a function of the blade length

17.

A.3.2 Coefficients

See Table

Table 3 Coefficients of the polynomial fit

3.

A.3.3 OCTAVE code

figure g
figure h
figure i
figure j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, C., Basso, A.D., Francucci, G.M. et al. Design of blades for household small wind turbines. Int J Energy Environ Eng 13, 621–642 (2022). https://doi.org/10.1007/s40095-021-00464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00464-3

Keywords

Navigation