Skip to main content
Log in

Numerical simulation of a combination of a new solar ventilator and geothermal heat exchanger for natural ventilation and space cooling

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

In this article, cooling and ventilating performance of the passive cooling system is investigated numerically. This system consists of a novel vertical solar chimney with fins and an earth-air heat exchanger to work as an alternative ventilation, and air-conditioning system during the summer in a hot and arid climate (Yazd, Iran). In this study, the RNG \(K-\varepsilon\) turbulence model was utilized to simulate the internal fluid flow. Geometric parameters of the solar chimney such as its height, diameter, number of fins, the depth, length, and diameter of the Earth-air heat exchanger 's pipes were studied. The optimum geometry performance during different day times is also investigated numerically by ANSYS Fluent 18.2 on the hottest day of the year. Given the numerical study, the optimum geometry consists of (a) solar chimney with 6 m height, 1 m diameter, and 3 fins, and (b) Earth-air heat exchanger’s pipes with 7 m depth, 360 m length, and 0.2 m diameter. The best performance for the hottest day of the year reached at 14:00 when the indoor temperature experienced 295.07 K, solar chimney and Earth-air heat exchanger outlet temperature was 306.18 and 288.18 K, respectively. Besides, this system satisfied the ventilation requirements for laboratories and residential sectors and was able to save 85% of energy consumption at the best performance point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

ACH:

Air change per hour

CFD:

Computational fluid dynamics

EAHE:

Earth-air heat exchanger

GHE:

Ground heat exchanger

HVAC:

Heating, ventilation, and air-conditioning

IAQ:

Indoor air quality

LPM:

Liter per minute

PV:

Photovoltaic module

PCM:

Phase change material

RNG:

Renormalization group

SC:

Solar chimney

UDF:

User defined functions

\(C_{a}\) :

Specific heat \(\left( {\frac{{\text{J}}}{{{\text{kg}}\,{\text{K}}}}} \right)\)

g :

Gravitational acceleration

\(G_{k}\) :

Generation of turbulence kinetic energy due to the mean velocity gradients

\(G_{b}\) :

Generation of turbulence kinetic energy due to buoyancy

h :

Convective heat transfer coefficient \(\left( {\frac{{\text{W}}}{{{\text{m}}^{2} \,{\text{K}}}}} \right)\)

K :

Thermal conductivity \(\left( {\frac{{\text{W}}}{{{\text{m}}\,{\text{K}}}}} \right)\)

Q :

Volumetric flow rate \(\left( {\frac{{{\text{Lit}}}}{{\text{s}}}} \right)\)

\(S_{k}\) :

Turbulent kinetic energy source term

\(S_{\varepsilon }\) :

Rate of dissipation of turbulent kinetic energy source term

t :

Time (s)

\(T_{0}\) :

Operating temperature (K)

T :

Temperature (K)

u :

Velocity \(\left( {\frac{{\text{m}}}{{\text{s}}}} \right)\)

V :

Volume (m3)

Y m :

Contribution of the fluctuating dilatation incompressible turbulence to the overall dissipation rate

\(\alpha_{k}\) :

Inverse effective Prandtl numbers for \(k\)

\(\alpha_{\varepsilon }\) :

Inverse effective Prandtl numbers for \(\varepsilon\)

\(\beta\) :

Thermal expansion coefficient

\(\varepsilon\) :

Rate of dissipation of turbulent kinetic energy

\(\mu\) :

Dynamic viscosity \(\left( {\frac{{{\text{kg}}}}{{{\text{m}}\,{\text{s}}}}} \right)\)

\(\mu_{{{\text{eff}}}}\) :

Effective viscosity \(\left( {\frac{{{\text{kg}}}}{{{\text{m}}\,{\text{s}}}}} \right)\)

\(k\) :

Turbulent kinetic energy

\(\rho\) :

Fluid density \(\left( {\frac{{{\text{kg}}}}{{{\text{m}}^{3} }}} \right)\)

References

  1. Agencia Internacional de la Energía. World Energy Outlook 2017. Int ENERGY AGENCY Together Secure Sustain 2017; Executive: 13 (2017)

  2. Bloom, D. E.: Population 2020. Finance & Development 0057.001, A002. Web. 26 May 2021 (2020). https://doi.org/10.5089/9781513528830.022.A002

  3. Energy US. 237218984-Morfologia-Vegetal-Goncalves-E-G-Lorenzi-2007-pdf.pdf. www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf (2017)

  4. IEA Online Data Services: http://data.iea.org/ieastore/statslisting.asp

  5. Japan Refrigeration and Air Conditioning Industry Association (JRAIA), World Air Conditioner Demand by Region (2017)

  6. Etheridge, D.W., Sandberg, M.: Building Ventilation: Theory and Measurement. Wiley, Chichester (2002)

    Google Scholar 

  7. Ruparathna, R., Hewage, K., Sadiq, R.: Improving the energy efficiency of the existing building stock: a critical review of commercial and institutional buildings. Renew. Sustain. Energy Rev. 53, 1032–1045 (2016)

    Article  Google Scholar 

  8. Zhang, H., et al.: A critical review of combined natural ventilation techniques in sustainable buildings. Renew. Sustain. Energy Rev. 141, 11079 (2021)

    Article  Google Scholar 

  9. Geetha, N., Velraj, R.: Passive cooling methods for energy-efficient buildings with and without thermal energy storage. A review. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 29, 913–946 (2012)

    Google Scholar 

  10. Gou, S., Nik, V.M., Scartezzini, J.L., Zhao, Q., Li, Z.: Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy Build. 169, 484–506 (2018)

    Article  Google Scholar 

  11. Santamouris, M., Kolokotsa, D.: Passive cooling dissipation techniques for buildings and other structures: the state of the art. Energy Build. 57, 74–94 (2013)

    Article  Google Scholar 

  12. Bhamare, D.K., Rathod, M.K., Banerjee, J.: Passive cooling techniques for building and their applicability in different climatic zones—the state of the art. Energy Build. 198, 467–490 (2019)

    Article  Google Scholar 

  13. Prieto, A., Knaack, U., Klein, T., Auer, T.: 25 Years of cooling research in office buildings: review for the integration of cooling strategies into the building façade (1990–2014). Renew. Sustain. Energy Rev. 71, 89–102 (2017)

    Article  Google Scholar 

  14. Panchabikesan, K., Vellaisamy, K., Ramalingam, V.: Passive cooling potential in buildings under various climatic conditions in India. Renew. Sustain. Energy Rev. 78, 1236–1252 (2017)

    Article  Google Scholar 

  15. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Handbook of Fundamentals, New York (2009)

  16. Mak, C.M., Niu, J.L., Lee, C.T., Chan, K.F.: A numerical simulation of wing walls using computational fluid dynamics. Energy Build. 39, 995–1002 (2007)

    Article  Google Scholar 

  17. Montero, J.I., Hunt, G.R., Kamaruddin, R., Antón, A., Bailey, B.J.: Effect of ventilator configuration on wind-driven ventilation in a crop protection structure for the tropics. J. Agric. Eng. Res. 80, 99–107 (2001)

    Article  Google Scholar 

  18. Pfeiffer, A., Dorer, V., Weber, A.: Modelling of cowl performance in building simulation tools using experimental data and computational fluid dynamics. Build. Environ. 43, 1361–1372 (2008)

    Article  Google Scholar 

  19. Mhshermanlblgov MHS, Building Airtightness: Research and Practice (2016)

  20. Bansal, N.K., Mathur, R., Bhandari, M.S.: A study of solar chimney assisted wind tower system for natural ventilation in buildings. J. Build. Environ. 3, 373–377 (1994)

    Google Scholar 

  21. Evans, M.: Housing, Climate, and Comfort. Architectural Press, London (1980)

    Google Scholar 

  22. Ismail, M., Abdul Rahman, A.M.: Comparison of different hybrid turbine ventilator (HTV) application strategies to improve the indoor thermal comfort. Int. J. Environ. Res. 4, 297–308 (2010)

    Google Scholar 

  23. Gao, C.F., Lee, W.L.: Evaluating the influence of openings configuration on natural ventilation performance of residential units in Hong Kong. Build. Environ. 46, 961–969 (2011)

    Article  Google Scholar 

  24. Evola, G., Popov, V.: Computational analysis of wind-driven natural ventilation in buildings. Energy Build. 38, 491–501 (2006)

    Article  Google Scholar 

  25. Shetabivash, H.: Investigation of opening position and shape on the natural cross ventilation. Energy Build. 93, 1–15 (2015)

    Article  Google Scholar 

  26. Prajongsan, P., Sharples, S.: Enhancing natural ventilation, thermal comfort, and energy savings in high-rise residential buildings in Bangkok through the use of ventilation shafts. Build. Environ. 50, 104–113 (2012)

    Article  Google Scholar 

  27. Aflaki, A., Mahyuddin, N., Al-Cheikh Mahmoud, Z., Baharum, M.R.: A review on natural ventilation applications through building façade components and ventilation openings in tropical climates. Energy Build. 101, 153–162 (2015)

    Article  Google Scholar 

  28. Ahmed, T., Kumar, P., Mottet, L.: Natural ventilation in warm climates: the challenges of thermal comfort, heatwave resilience, and indoor air quality. Renew. Sustain. Energy Rev. 138, 110669 (2021)

    Article  Google Scholar 

  29. Cheng, X.D., Shi, Z.C., Nguyen, K., Zhang, L.H., Zhou, Y., Zhang, G.M., et al.: Solar chimney in tunnel considering energy-saving and fire safety. Energy 210, 188601 (2020)

    Article  Google Scholar 

  30. Carlton, E.J., Barton, K., Shrestha, P.M., Humphrey, J., Newman, L.S., Adgate, J.L., et al.: Relationships between home ventilation rates and respiratory health in the Colorado Home Energy Efficiency and Respiratory Health (CHEER) study. Environ. Res. 169, 297–307 (2019)

    Article  Google Scholar 

  31. Chartier, Y., Pessoa-Silva, C.: Natural Ventilation for Infection Control in Health-Care Settings. World Health Organization (2009)

    Google Scholar 

  32. Oropeza-Perez, I., Ostergaard, P.A.: Active and passive cooling methods for dwellings: a review. Renew. Sustain. Energy Rev. 82, 531–544 (2018)

    Article  Google Scholar 

  33. Elghamry, R., Hassan, H.: An experimental work on the impact of new combinations of solar chimney, photovoltaic and geothermal air tube on building cooling and ventilation. Sol. Energy 205, 142–153 (2020)

    Article  Google Scholar 

  34. Bacharoudis, E., Vrachopoulos, M.G., Koukou, M.K., Margaris, D., Filios, A.E., Mavrommatis, S.A.: Study of the natural convection phenomena inside a wall solar chimney with one wall adiabatic and one wall under a heat flux. Appl. Therm. Eng. 27, 2266–2275 (2007)

    Article  Google Scholar 

  35. Miyazaki, T., Akisawa, A., Kashiwagi, T.: The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate. Renew. Energy 31, 987–1010 (2006)

    Article  Google Scholar 

  36. Zavala-Guillén, I., Xamán, J., Hernández-Pérez, I., Hernández-Lopéz, I., Jiménez-Xamán, C., MorenoBernal, P., Sauceda, D.: Ventilation potential of an absorber-partitioned air channel solar chimney for diurnal use under Mexican climate conditions. J. Appl. Therm. Eng. 149, 807–821 (2018)

    Article  Google Scholar 

  37. Sh-Eldin, M., Sopian, K., Alghoul, F.O., Abouhnik, A., Ae Muftah, M.: Solar chimney model parameters to enhance cooling PV panel performance. Mod. Appl. Sci. 7, 24–32 (2013)

    Google Scholar 

  38. Zou, Z., Gong, H., Wang, J., Xie, S.: Numerical investigation of solar enhanced passive air cooling system for concentration photovoltaic module heat dissipation. J. Clean Energy Technol. 5, 3–8 (2017)

    Google Scholar 

  39. Asayesh, M., Kasaeian, A., Ataei, A.: Optimization of a combined solar chimney for desalination and power generation. Energy Convers. Manag. 150, 72–80 (2017)

    Article  Google Scholar 

  40. Nasri, F., Alqurashi, F., Nciri, R., Ali, C.: Design and simulation of a novel solar airconditioning system coupled with a solar chimney. Sustain. Cities Soc. 40, 667–676 (2018)

    Article  Google Scholar 

  41. Ahmed, A., Saleem, A., Bady, M., Abdel-rahman, O.A.K.: Achieving standard natural ventilation rate of dwellings in a hot-arid climate using the solar chimney. Energy Build. 133, 360–370 (2016)

    Article  Google Scholar 

  42. Nugroho, A.M., Ahmad, M.H., Hiung, J.: Evaluation of parametric for the development of vertical solar chimney ventilation in the hot and humid climate. In: The 2nd International Network for a Tropical Architecture Conference, pp. 160–70. Christian Wacana University, Jogjakarta (2006)

  43. Ming, T., Liu, W., Pan, Y., Xu, G.: Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer. Energy Convers. Manag. 49, 2872–2879 (2008)

    Article  Google Scholar 

  44. Yu, Y., et al.: Investigation of a coupled geothermal cooling system with earth tube and a solar chimney. Appl. Energy 114, 209–217 (2014)

    Article  Google Scholar 

  45. Serageldin, A.A., Abdelrahman, A.K., Ookawara, S.: Earth-air heat exchanger thermal performance in egyptian conditions: experimental results, mathematical model, and computational fluid dynamics simulation. Energy Convers. Manag. 122, 25–38 (2016)

    Article  Google Scholar 

  46. Santamouris, M., Mihalakaha, G., Balaras, C.A., Argirioua Asimakopoulos, D., Vallinaras, M.: Use of buried pipes for energy conservation in cooling of the agricultural greenhouse. Sol. Energy 35, 111–124 (1995)

    Article  Google Scholar 

  47. Kratti, M., Kreider, J.F.: Analytical model for heat transfer in an underground air tunnel. Energy Convers. Manag. 37(10), 1561–1574 (1996)

    Article  Google Scholar 

  48. Rad, F.M., Fung, A.S., Leong, W.H.: Feasibility of combined solar thermal and ground source heat pump systems in a cold climate, Canada. Energy Build. 61, 224–232 (2013)

    Article  Google Scholar 

  49. Liang, J.-D., et al.: Theoretical analysis of photovoltaic panels using a spray cooling system with a shallow geothermal energy heat exchanger (2018).

  50. Maerefat, M., Haghighi, A.P.: Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney. Renew. Energy 35, 2316–2324 (2010)

    Article  Google Scholar 

  51. Orszag, S.A., Yakhot, V., Flannery, W.S., Boysan, F., Choudhury, D., Maruzewski, J., Patel, B.: Renormalization group modeling and turbulence simulations. In: International Conference on Near-Wall Turbulent Flows, Tempe, Arizona (1993)

  52. Gupta, A., Kumar, R.: Three-dimensional turbulent swirling flow in a cylinder: experiments and computations. Int. J. Heat Fluid Flow 28(2), 249–261 (2007)

    Article  MathSciNet  Google Scholar 

  53. ANSI/ASHRAE Standard 62.2-2013: Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta (2013)

    Google Scholar 

  54. Bahadori, M.N., Haghighat, F.: Long-term storage of chilled water in cisterns in hot, arid regions. Build. Environ. 23(1), 29–37 (1988)

    Article  Google Scholar 

  55. Rabani, R., Faghih, A.K., Rabani, M., Rabani, M.: Numerical simulation of an innovated building cooling system with the combination of the solar chimney and water spraying system. Heat Mass Transf. 50, 1609–1625 (2014)

    Article  Google Scholar 

  56. AboulNaga, M.M., Abdrabboh, S.N.: Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney. Renew. Energy 19(1–2), 47–54 (2000)

    Article  Google Scholar 

  57. Li, Y., et al.: An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger. Renew. Energy 175, 486–500 (2021)

    Article  Google Scholar 

  58. Sadeghi, H., Kalantar, V.: Performance analysis of a wind tower in combination with an underground channel. Sustain. Cities Soc. 37, 427–437 (2018)

    Article  Google Scholar 

  59. Khedari, J., Rachapradit, N., Hirunlabh, J.: Field study performance of solar chimney with air-conditioned building. Energy 28, 1099–1114 (2003)

    Article  Google Scholar 

  60. Moosavi, L., et al.: New design for a solar chimney with integrated windcatcher for space cooling and ventilation. Build. Environ. 181, 106785 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vali Kalantar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalantar, V., Khayyaminejad, A. Numerical simulation of a combination of a new solar ventilator and geothermal heat exchanger for natural ventilation and space cooling. Int J Energy Environ Eng 13, 785–804 (2022). https://doi.org/10.1007/s40095-021-00463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00463-4

Keywords

Navigation