Skip to main content

Effects of coupled heat sources in a triple power cycle: thermodynamic, economics and environment analysis and optimization


In this study, the thermodynamic and economic analysis for a triple combination including the Brayton cycle (GT), reheat cycle and an organic Rankine cycle, and Brayton cycle by coupling geothermal with biomass energy source and solar energy source is presented. Thermodynamically and economically, the effects of changing working fluid, air, CO, CO2, N2, and NO2 are studied for pressure ratio and air mass flow in the GT. The highest and lowest total thermal efficiency belong to CO and NO2 with values of 32.98% and 30.64%, respectively. The highest thermal efficiency and the lowest cost occur in the pressure ratio of 4 and 2, respectively. Ammonia and isopropanol have the highest and lowest combined power output cycles with organic Rankine cycle efficiency of 0.8654 and 0.9499, and amount of the overall thermal efficiency equal to 0.4196 and 0.4067, respectively. In addition, geothermal energy, solar energy, and biomass energy have been used to supply part of the energy required by the cycle. The solar tower is designed to supply the required heat from the sun. Optimization is performed based on thermal efficiency and cycle cost using a genetic algorithm. The solar thermal efficiency of summer was less than winter, and the cost of heat source in summer was more than winter because of the expense of geothermal in summer. Compared to the geothermal–solar cycle, the geothermal–biomass cycle has a lower cost and better performance. The environmental effects of the cycle have been investigated with different energy sources, and it has been found that the geothermal–solar cycle has less destructive ecological impacts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Evans, A., Strezov, V., Evans, T.J.: Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 16(6), 4141–4147 (2012).

    Article  Google Scholar 

  2. 2.

    Karkour, S., Ichisugi, Y., Abeynayaka, A., Itsubo, N.: External-cost estimation of electricity generation in G20 countries: case study using a global life-cycle impact-assessment method. Sustainability 12(5), 2002 (2020)

    Article  Google Scholar 

  3. 3.

    Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., Ding, Y.: Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009)

    Article  Google Scholar 

  4. 4.

    Menéndez, J., Ordóñez, A., Álvarez, R., Loredo, J.: Energy from closed mines: underground energy storage and geothermal applications. Renew. Sustain. Energy Rev. 108, 498–512 (2019).

    Article  Google Scholar 

  5. 5.

    Burer, M., Tanaka, K., Favrat, D., Yamada, K.: Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers. Energy 28(6), 497–518 (2003).

    Article  Google Scholar 

  6. 6.

    Al-Sulaiman, F.A., Hamdullahpur, F., Dincer, I.: Trigeneration: a comprehensive review based on prime movers. Int. J. Energy Res. 35(3), 233–258 (2011).

    Article  Google Scholar 

  7. 7.

    Wang, H., Peterson, R., Herron, T.: Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle). Energy 36(8), 4809–4820 (2011).

    Article  Google Scholar 

  8. 8.

    Carvalho, M., Serra, L.M., Lozano, M.A.: Optimal synthesis of trigeneration systems subject to environmental constraints. Energy 36(6), 3779–3790 (2011).

    Article  Google Scholar 

  9. 9.

    Wu, C., Wang, S.-s, Li, J.: Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants. Energy Convers. Manag. 171, 936–52 (2018).

    Article  Google Scholar 

  10. 10.

    Khan, Y., Mishra, R.S.: Parametric (exergy-energy) analysis of parabolic trough solar collector-driven combined partial heating supercritical CO2 cycle and organic Rankine cycle. Energy Sources Part A Recov. Util. Environ. Effects (2020).

    Article  Google Scholar 

  11. 11.

    Habibi, H., Zoghi, M., Chitsaz, A., Shamsaiee, M.: Thermo-economic performance evaluation and multi-objective optimization of a screw expander-based cascade Rankine cycle integrated with parabolic trough solar collector. Appl. Therm. Eng. 180, 115827 (2020).

    Article  Google Scholar 

  12. 12.

    Tempesti, D., Fiaschi, D.: Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy. Energy 58, 45–51 (2013).

    Article  Google Scholar 

  13. 13.

    Mohammadkhani, F., Shokati, N., Mahmoudi, S., Yari, M., Rosen, M.: Exergoeconomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic rankine cycles. Energy 65, 533–543 (2014).

    Article  Google Scholar 

  14. 14.

    Liu, B.-T., Chien, K.-H., Wang, C.-C.: Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29(8), 1207–1217 (2004).

    Article  Google Scholar 

  15. 15.

    Mikielewicz, D., Mikielewicz, J.: A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl. Therm. Eng. 30(16), 2357–2362 (2010).

    Article  Google Scholar 

  16. 16.

    Dai, Y., Wang, J., Gao, L.: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers. Manag. 50(3), 576–582 (2009).

    Article  Google Scholar 

  17. 17.

    Sirignano, W., Liu, F.: Performance increases for gas-turbine engines through combustion inside the turbine. J. Propul. Power 15(1), 111–118 (1999).

    Article  Google Scholar 

  18. 18.

    Abd El-Maksoud, R.M.: Gas turbine with heating during the expansion in the stator blades. Energy Convers. Manag. 78, 219–224 (2014).

    Article  Google Scholar 

  19. 19.

    Boehm, R.F., Yang, H., Yan, J.: Handbook of Clean Energy Systems. Wiley (2015)

    Google Scholar 

  20. 20.

    Farahani, S.D., Alibeigi, M.: Investigation of power generated from a PVT-TEG system in Iranian cities. J. Solar Energy Res. 5(4), 603–16 (2020).

    Article  Google Scholar 

  21. 21.

    Farahani, S.D., Sarlak, M.A., Alibeigi, M.: Thermal analysis of PVT-HEX system: electricity efficiency and air conditioning system. J. Solar Energy Res. 6(1), 625–33 (2021).

    Article  Google Scholar 

  22. 22.

    Reyes-Belmonte, M.A., Sebastián, A., González-Aguilar, J., Romero, M.: Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant. In: AIP conference proceedings, AIP Publishing LLC (2017)

  23. 23.

    Blanco, M., Santigosa, L.R.: Advances in Concentrating Solar Thermal Research and Technology. Woodhead Publishing (2016)

    Google Scholar 

  24. 24.

    Neises, T., Turchi, C.: A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications. Energy Procedia. 49, 1187–1196 (2014).

    Article  Google Scholar 

  25. 25.

    Turchi, C.S., Ma, Z., Neises, T.W., Wagner, M.J.: Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. J. Solar Energy Eng. (2013).

    Article  Google Scholar 

  26. 26.

    Stein, W., Buck, R.: Advanced power cycles for concentrated solar power. Sol. Energy 152, 91–105 (2017).

    Article  Google Scholar 

  27. 27.

    Pramanik, S., Ravikrishna, R.: A review of concentrated solar power hybrid technologies. Appl. Therm. Eng. 127, 602–637 (2017).

    Article  Google Scholar 

  28. 28.

    Detwiler, R.L., Roberts, J.J., Ralph, W., Bonner, B.P.: Modeling fluid flow and electrical resistivity in fractured geothermal reservoir rocks: Lawrence Livermore National Lab (LLNL), Livermore, CA (United States) (2003)

  29. 29.

    Factsheets on geothermal electricity. European Geothermal Energy council (EGEC). 12 (2014)

  30. 30.

    Lentz, Á., Almanza, R.: Parabolic troughs to increase the geothermal wells flow enthalpy. Sol. Energy 80(10), 1290–1295 (2006).

    Article  Google Scholar 

  31. 31.

    Boyaghchi, F.A., Heidarnejad, P.: Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application. Energy Convers. Manag. 97, 224–234 (2015).

    Article  Google Scholar 

  32. 32.

    Chen, L., Feng, H., Ge, Y.: Power and efficiency optimization for open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle. Entropy 22(6), 677 (2020).

    MathSciNet  Article  Google Scholar 

  33. 33.

    Mohammadi, K., Ellingwood, K., Powell, K.: A novel triple power cycle featuring a gas turbine cycle with supercritical carbon dioxide and organic Rankine cycles: thermoeconomic analysis and optimization. Energy Convers. Manag. 220, 113123 (2020).

    Article  Google Scholar 

  34. 34.

    Bademlioglu, A.H., Canbolat, A.S., Kaynakli, O.: Multi-objective optimization of parameters affecting organic rankine cycle performance characteristics with Taguchi-Grey relational analysis. Renew. Sustain. Energy Rev. 117, 109483 (2020).

    Article  Google Scholar 

  35. 35.

    Rabbani, M., Ratlamwala, T., Dincer, I.: Transient energy and exergy analyses of a solar based integrated system. J. Solar Energy Eng. 137(1), 011010 (2015)

    Article  Google Scholar 

  36. 36.

    Shahin, M.S., Orhan, M.F., Uygul, F.: Thermodynamic analysis of parabolic trough and heliostat field solar collectors integrated with a Rankine cycle for cogeneration of electricity and heat. Sol. Energy 136, 183–196 (2016)

    Article  Google Scholar 

  37. 37.

    Shaaban, S.: Analysis of an integrated solar combined cycle with steam and organic rankine cycles as bottoming cycles. Energy Convers. Manag. 126, 1003–1012 (2016)

    Article  Google Scholar 

  38. 38.

    Sachdeva, J., Singh, O.: Thermodynamic analysis of solar powered triple combined brayton, rankine and organic rankine cycle for carbon free power. Renew. Energy 139, 765–80 (2019).

    Article  Google Scholar 

  39. 39.

    Bhatt, B., Thakore, S.B.: Stoichiometry. Tata McGraw-Hill Education (2010)

    Google Scholar 

  40. 40.

    Kazemi, H., Ehyaei, M.: Energy, exergy, and economic analysis of a geothermal power plant. Adv. Geo-Energy Res. 2(2), 190–209 (2018).

    Article  Google Scholar 

  41. 41.

    Noorollahi, Y., Ghasemi, G., Kowsary, F., Roumi, S., Jalilinasrabady, S.: Modelling of heat supply for natural gas pressure reduction station using geothermal energy. Int. J. Sustain. Energy 38(8), 773–793 (2019).

    Article  Google Scholar 

  42. 42.

    Li, X., Kong, W., Wang, Z., Chang, C., Bai, F.: Thermal model and thermodynamic performance of molten salt cavity receiver. Renew. Energy 35(5), 981–988 (2010)

    Article  Google Scholar 

  43. 43.

    Benammar, S., Khellaf, A., Mohammedi, K.: Contribution to the modeling and simulation of solar power tower plants using energy analysis. Energy Convers. Manag. 78, 923–930 (2014).

    Article  Google Scholar 

  44. 44.

    Hezaveh, S.A., Farahani, S.D., Alibeigi, M.: Technical-economic analysis of the organic rankine cycle with different energy sources. J. Solar Energy Res. 5(1), 362–373 (2020).

    Article  Google Scholar 

  45. 45.

    Mehmood, S., Reddy, B.V., Rosen, M.A.: Energy analysis of a biomass co-firing based pulverized coal power generation system. Sustainability 4(4), 462–490 (2012).

    Article  Google Scholar 

  46. 46.

    Mann, M.K., Spath, P.L.: Life cycle assessment of a biomass gasification combined-cycle power system: national renewable Energy Lab., Golden, CO (US) (1997)

  47. 47.

    Darrow, K., Tidball, R., Wang, J., Hampson, A.: Catalog of CHP Technologies, pp. 5–6. US Environmental Protection Agency, Washington (2015)

    Google Scholar 

  48. 48.

    Wang, X., Yang, Y., Zheng, Y., Dai, Y.: Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application. Energy 119, 971–982 (2017).

    Article  Google Scholar 

  49. 49.

    Obidziñski, S.A.: Pelletization of biomass waste with potato pulp content. Int. Agrophys. 28(1), 85 (2014).

    Article  Google Scholar 

  50. 50.

    Kolb, G.J., Ho, C.K., Mancini, T.R., Gary, J.A.: Power tower technology roadmap and cost reduction plan. SAND2011-2419, Sandia National Laboratories, Albuquerque, NM. (2011)

  51. 51.

    Fritsch, A., Frantz, C., Uhlig, R.: Techno-economic analysis of solar thermal power plants using liquid sodium as heat transfer fluid. Sol. Energy 177, 155–162 (2019).

    Article  Google Scholar 

  52. 52.

    Ghorbani, N., Aghahosseini, A., Breyer, C.: Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050–Achieving zero greenhouse gas emissions and overcoming the water crisis. Renew. Energy 146, 125–148 (2020).

    Article  Google Scholar 

  53. 53.

    Charbonneau, P., Knapp, B.: A user's guide to PIKAIA 1.0. (1995)

Download references

Author information



Corresponding author

Correspondence to Somayeh Davoodabadi Farahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alibeigi, M., Farahani, S.D. & Hezaveh, S.A. Effects of coupled heat sources in a triple power cycle: thermodynamic, economics and environment analysis and optimization. Int J Energy Environ Eng (2021).

Download citation


  • Solar energy
  • Geothermal
  • Biomass
  • Emission