Skip to main content

A multi-objective approach for renewable distributed generator unit’s placement considering generation and load uncertainties


Penetration of Renewable distributed generation (RDG) units has increased in recent years due to increased environmental concerns and depleting fossil fuels. Deployment of RDG units will offer technical benefits such as loss minimization, bus voltage profile improvement, line loading reduction. Optimal allocation of RDG units is a challenging task as the generation is time-varying and uncertain in nature. In this work, optimal RDG allocation problem is formulated by considering time-varying and uncertain nature of generation and load demand using a Point estimate method (PEM)-based load flow with an objective to simultaneously minimize losses, improve voltage profile and reduce line loading. An efficient pareto front-based Multi-objective Backtracking search algorithm (PMBSA) is proposed in this work to solve optimal renewable DG placement problem. Results obtained with PEM are compared with those obtained with Monte Carlo simulation method. Efficacy of formulated approach proposed in this paper is verified on a practical 67-bus distribution system and IEEE-118 bus test system. Results show that PMBSA is superior to the standard NSGA-II algorithm in obtaining near optimal solution for optimal RDG allocation problem. It is verified that proposed approach ensures very less voltage limit violations of bus voltages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Availability of data and material

Included in appendix section.


  1. 1.

    Adefarati, T., Bansal, R.C.: Integration of renewable distributed generators into the distribution system: a review. IET Renew. Power Gener. 10, 873–884 (2016)

    Article  Google Scholar 

  2. 2.

    Atwa, Y.M., El-Saadany, E.F.: Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems. IET Renew. Power Gener. 5, 79–88 (2011)

    Article  Google Scholar 

  3. 3.

    Liu, Z., Wen, F., Ledwich, G.: Optimal siting and sizing of distributed generators in distribution systems considering uncertainties. IEEE Trans. Power Deliv. 26, 2541–2551 (2011)

    Article  Google Scholar 

  4. 4.

    Shaaban, M.F., Atwa, Y.M., El-Saadany, E.F.: DG allocation for benefit maximization in distribution networks. IEEE Trans. Power Syst. 28, 639–649 (2013)

    Article  Google Scholar 

  5. 5.

    Evangelopoulos, V.A., Georgilakis, P.S.: Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm. IET Gener. Transm. Distrib. 8, 389–400 (2014)

    Article  Google Scholar 

  6. 6.

    Hung, D.Q., Mithulananthan, N., Lee, K.Y.: Determining PV penetration for distribution systems with time-varying load models. IEEE Trans. Power Syst. 29, 3048–3057 (2014)

    Article  Google Scholar 

  7. 7.

    Kayal, P., Chanda, C.K.: Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network. Renew. Energy 75, 173–186 (2015)

    Article  Google Scholar 

  8. 8.

    Ameli, A., Farrokhifard, M.R., Davari-nejad, E., Oraee, H., Haghifam, M.R.: Profit-based DG planning considering environmental and operational issues: a multiobjective approach. IEEE Syst. J. 11, 1959–1970 (2017)

    Article  Google Scholar 

  9. 9.

    Zheng, Y., Dong, Z.Y., Meng, K., Yang, H., Lai, M., Wong, K.P.: Multi-objective distributed wind generation planning in an unbalanced distribution system. CSEE J. Power Energy Syst. 3, 186–195 (2017)

    Article  Google Scholar 

  10. 10.

    Balaban, G., Lazaroiu, G.C., Dumbrava, V., Sima, C.A.: Analysing renewable energy source impacts on power system national network code. Inventions 23, 1–18 (2017)

    Google Scholar 

  11. 11.

    Sima, C.A., Lazaroiu, G.C., Dumbrava, V., Roscia, M., Zaninelli, D., and Duquenne, P.: Stochastic programming approach for TEP optimization considering RES integration in electricity market. International Conference on energy and environment (CIEM). 485–489 (2017)

  12. 12.

    Meena, N.K., Parashar, S., Swarnkar, A., Gupta, N., Niazi, K.R.: Improved elephant herding optimization for multiobjective DER accommodation in distribution systems. IEEE Trans. Industr. Inf. 14, 1029–1039 (2018)

    Article  Google Scholar 

  13. 13.

    Yarahmadi, M., Shakarami, M.R.: An analytical and probabilistic method to determine wind distributed generators penetration for distribution networks based on time-dependent loads. Int. J. Electr. Power Energy Syst. 103, 404–413 (2018)

    Article  Google Scholar 

  14. 14.

    Mirza, S., Jasna, H., Tatjana, K., Aphrodite, K.: Distributed generation allocation considering uncertainties. Int. Trans. Electr. Energy Syst. (2018).

    Article  Google Scholar 

  15. 15.

    HassanzadehFard, H., Jalilian, A.: Optimal sizing and location of renewable energy based DG units in distribution systems considering load growth. Int. J. Electr. Power Energy Syst. 101, 356–370 (2018)

    Article  Google Scholar 

  16. 16.

    Kiran Babu, B., Sydulu, M.: A solution to multi-objective optimal accommodation of distributed generation problem of power distribution networks: An analytical approach. Int. Trans. Electr. Energy Syst. (2019).

    Article  Google Scholar 

  17. 17.

    Abdelaziz, M., Moradzadeh, M.: Monte-Carlo simulation based multi-objective optimum allocation of renewable distributed generation using OpenCL. Electric Power Sys. Res. 170, 81–91 (2019)

    Article  Google Scholar 

  18. 18.

    Ahmed, A., Nadeem, M.F., Sajjad, I.A., Bo, R., Khan, I.A., Raza, A.: Probabilistic generation model for optimal allocation of wind DG in distribution systems with time varying load models. Sustain. Energy Grids Netw. (2020).

    Article  Google Scholar 

  19. 19.

    Aliabadi, M.J., Radmehr, M.: Optimization of hybrid renewable energy system in radial distribution networks considering uncertainty using meta-heuristic crow search algorithm. Appl. Soft Comput. (2021).

    Article  Google Scholar 

  20. 20.

    Ministry of New and Renewable energy, Government of India. Accessed 2 Feb 2017

  21. 21.

    Kollu, R., Rayapudi, S.R., Narasimham, S. et al: Mixture probability distribution functions to model wind speed distributions. Int. J. Energy Environ. Eng. 3, 27 (2012).

    Article  Google Scholar 

  22. 22.

    Chun-Lien, Su.: Probabilistic load-flow computation using point estimate method. IEEE Trans. Power Syst. 20, 1843–1851 (2005)

    Article  Google Scholar 

  23. 23.

    Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219, 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Raghuwanshi, M.M., Kakde, O.G.: Survey on multiobjective evolutionary and real coded genetic algorithms. In: Proceedings of the 8th Asia pacific symposium on intelligent and evolutionary systems. 150–161 (2004)

  25. 25.

    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  26. 26.

    Patibandla, A., Kollu, R., Rayapudi, S.R., Manyala, R.R.: A multi-objective approach for the optimal design of a standalone hybrid renewable energy system. Int. J. Energy Res. (2021).

    Article  Google Scholar 

  27. 27.

    Nekooei, K., Farsangi, M.M., Nezamabadi-Pour, H., Lee, K.Y.: An improved multi-objective harmony search for optimal placement of DGs in distribution systems. IEEE Trans. Smart Grid 4, 557–567 (2013)

    Article  Google Scholar 

  28. 28.

    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8, 173–195 (2000)

    Article  Google Scholar 

  29. 29.

    Ravindra, K., Jayaram, K.: Multi-Objective approach for capacitor placement considering uncertainty using point estimate method. IEEE Region 10 Symposium (2017).

  30. 30.

    Kollu, R., Rayapudi, S.R., Sadhu, V.L.: A novel method for optimal placement of distributed generation in distribution systems using HSDO. Int. Trans. Electr. Energ. Syst. 24, 547–561 (2014)

    Article  Google Scholar 

  31. 31.

    Ghasemi, S., Moshtagh, J.: Radial distribution systems reconfiguration considering power losses cost and damage cost due to power supply interruption of consumers. Int. J. Electr. Eng. Inf. 5, 297–315 (2013)

    Google Scholar 

Download references


The authors received no specific funding for this work.

Author information




RK conceived the concept, framed the mathematical modeling and drafted the manuscript. KJ has done MATLAB programming, carried out data analysis to find PDF parameters and helped to formulate mathematical modeling. KRKVP checked the modeling, analyzed and substantiated the results, and helped in drafting the manuscript. KVSRM revised the manuscript and provided technical support.

Corresponding author

Correspondence to Kollu Ravindra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Consent for publication

All the authors gave consent for publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



See (Tables

Table 10 Shape and scale parameters of collected statistical wind data


Table 11 Shape and scale parameters of collected statistical solar data


Table 12 Mean and standard deviation of collected statistical domestic load data


Table 13 Mean and standard deviation of collected statistical commercial load data


Table 14 Mean and standard deviation of collected statistical mixed load data


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jayaram, K., Ravindra, K., Prasad, K.R.K.V. et al. A multi-objective approach for renewable distributed generator unit’s placement considering generation and load uncertainties. Int J Energy Environ Eng (2021).

Download citation


  • Pareto Multi-objective Backtracking Search Algorithm (PMBSA)
  • DG allocation
  • PEM load flow
  • Monte Carlo-based load flow