Skip to main content

Experimental performance assessment of photovoltaic water pumping system for agricultural irrigation in semi-arid environment of Sebseb—Ghardaia, Algeria

Abstract

In remote semi-arid area of Algerian Sahara, water supplying by PV panels for livestock and irrigation purposes is considered as an appropriate solution to developing the desert agriculture and improving the living conditions of the local population (Gov.dz. Available: https://madrp.gov.dz. Accessed: 26 May 2021). However, the operating performance of PV pumping system is affected by many dynamic factors, especially solar radiation and ambient temperature. On real well located at Sebseb—Ghardaia, Algeria (Latitude 32.26 N° and longitude 03.46E°), a PV pumping system for irrigation purposes is installed to investigate and evaluate its performance under different real meteorological conditions. Monthly and seasonal results were analyzed and discussed through the data monitoring system within one year (April 2020 to March 2021). The experimental results obtained show that the system can produce an average water volume of 17,122.22 m3/ year; only 62% of this capacity (divided as: 94.32% in summer, 52% in autumn, 68.5% in spring and 24.8% in winter) is used for watering the 70 palm trees, the rest (38%) will be employed to supply other associated type of crops (multiple crop irrigation). Also, the minimum and maximum values of performance ratio, capacity factor, reference yield and final yield are recorded (59.7% in June and 93.14% in December), (17.07% in January and 26.83% in May), (5.13 h/day in December and 7.09 h/day in June) and (4.1 h/day in January and 6.44 h/day in May), respectively. Furthermore, a sensitive analysis has shown that the best operating performances of the system are found in winter and spring after in autumn.

This is a preview of subscription content, access via your institution.

Fig.1
Fig.2
Fig.3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13
Fig.14
Fig.15
Fig.16
Fig.17
Fig.18
Fig.19
Fig.20
Fig.21

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

G :

Global solar irradiance [W/ m2]

G 0,stc :

Standard global solar irradiance [1000 W/m2]

T :

Ambient temperature [C°]

T 0,stc :

Standard ambient temperature [25 C°]

S :

Modules in series

P :

Modules in parallel

I ph :

Photocurrent [A]

q :

Electron charge 1.6 1019 [C]

K :

Boltzmann factor 1.380649 × 10−16 [erg/K]

I t :

Temperature coeff of short circuit current [%/K]

R s :

Series resistor [Ω]

R sh :

Parallel resistor [Ω]

I pv :

Current of the PV generator [A]

V pv :

Voltage of the PV generator [V]

V mp :

Optimal voltage of the PV generator [V]

I mp :

Optimal current of the PV generator [A]

I sc :

Short circuit current at STC [A]

V oc :

Open circuit voltage at STC [V]

P max :

Maximum power of PV generator at STC [W]

A pv :

Active area of PV array [m2]

P h :

Hydraulic power [W]

E i :

Incident solar energy [Wh]

E pv :

PV generator energy [Wh]

g :

Gravity acceleration [9.81 m/s2]

Q :

Water flow rate [m3/h]

H :

Total pressure head [m]

V :

Daily pumped water volume [m3/day

PV:

Photovoltaic

MPPT:

Maximum power point tracking

STC:

Standard test conditions

PR:

Performance ratio

CF:

Capacity factor

UR:

Water use rate

n :

Cell ideality factor

η pv :

Efficiency of the PV generator [%]

η pump-cont :

Efficiency of the controller-motor-pump [%]

η tot :

Total system efficiency [%]

\(\rho\) :

Water density [1000 kg/m3

References

  1. 1.

    Gov.dz. Available: https://madrp.gov.dz. Accessed: 26 May 2021

  2. 2.

    IEA – International Energy Agency, Iea.org. https://www.iea.org. Accessed 26 May 2021

  3. 3.

    Vieira da Rosa, A., Ordonez, J.C.: Fundamentals of Renewable Energy Processes, 4th edn. Academic Press, San Diego, CA (2021)

    Google Scholar 

  4. 4.

    Mousavi, S.A., Zarchi, R.A., Astaraei, F.R., Ghasempour, R., Khaninezhad, F.M.: Decision-making between renewable energy configurations and grid extension to simultaneously supply electrical power and fresh water in remote villages for five different climate zones. J. Clean. Prod. 279, 123617 (2021)

    Article  Google Scholar 

  5. 5.

    Bouraiou, A., et al.: Status of renewable energy potential and utilization in Algeria. J. Clean. Prod. 246, 119011 (2020)

    Article  Google Scholar 

  6. 6.

    He, R., Luo, L., Shamsuddin, A., Tang, Q.: Corporate carbon accounting: a literature review of carbon accounting research from the Kyoto protocol to the Paris agreement. Account Finance 12789 (2021)

  7. 7.

    Theme Region Ministère de l’énergie. Gov.dz. [Online]. https://www.energy.gov.dz. Accessed 26 May 2021

  8. 8.

    Zahraoui, Y., Basir Khan, M. R., Al Hamrouni, I., Mekhilef, S., Ahmed, M.: Current status, scenario, and prospective of renewable energy in algeria: a review. Preprints (2021)

  9. 9.

    Luz, T., Moura, P.: Power generation expansion planning with complementarity between renewable sources and regions for 100% renewable energy systems. Int. Trans. Electr. Energy Syst. 29(7) e2817 (2019)

  10. 10.

    Hamiche, A.M., Stambouli, A.B., Flazi, S.: A review on the water and energy sectors in Algeria: Current forecasts, scenario and sustainability issues. Renew. Sustain. Energy Rev. 41, 261–276 (2015)

    Article  Google Scholar 

  11. 11.

    Li, G., Jin, Y., Akram, M.W., Chen, X.: Research and current status of the solar photovoltaic water pumping system: a review. Renew. Sustain. Energy Rev. 79, 440–458 (2017)

    Article  Google Scholar 

  12. 12.

    Muhsen, D.H., Khatib, T., Nagi, F.: A review of photovoltaic water pumping system designing methods, control strategies and field performance. Renew. Sustain. Energy Rev. 68, 70–86 (2017)

    Article  Google Scholar 

  13. 13.

    Chandel, S.S., Nagaraju Naik, M., Chandel, R.: Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renew. Sustain. Energy Rev., 49, 1084–1099 (2015)

  14. 14.

    Allouhi, A., et al.: PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation. Renew. Energy 132, 798–812 (2019)

    Article  Google Scholar 

  15. 15.

    Santra, P.: Performance evaluation of solar PV pumping system for providing irrigation through micro-irrigation techniques using surface water resources in hot arid region of India. Agric. Water Manag., 245(106554): 106554 (2021)

  16. 16.

    Benghanem, M., Daffallah, K.O., Alamri, S.N., Joraid, A.A.: Effect of pumping head on solar water pumping system. Energy Convers. Manag. 77, 334–339 (2014)

    Article  Google Scholar 

  17. 17.

    Tiwari, A.K., Kalamkar, V.R.: Effects of total head and solar radiation on the performance of solar water pumping system. Renew. Energy 118, 919–927 (2018)

    Article  Google Scholar 

  18. 18.

    Yaichi, M., Mammeri, A., Fellah, M.K.: Monitoring and evaluation of PV pumping system performance installed in the Algeria’s Sahara city of adrar. Int. J. Electr. Eng. Inform. 8(2), 253–267 (2016)

    Google Scholar 

  19. 19.

    Salilih, E.M., Birhane, Y.T., Arshi, S.H.: Performance analysis of DC type variable speed solar pumping system under various pumping heads. Sol. Energy 208, 1039–1047 (2020)

    Article  Google Scholar 

  20. 20.

    Benghanem, M., Daffallah, K.O., Joraid, A.A., Alamri, S.N., Jaber, A.: Performances of solar water pumping system using helical pump for a deep well: A case study for Madinah, Saudi Arabia. Energy Convers. Manag. 65, 50–56 (2013)

    Article  Google Scholar 

  21. 21.

    Sontake, V.C., Tiwari, A.K., Kalamkar, V.R.: Experimental investigations on the seasonal performance variations of directly coupled solar photovoltaic water pumping system using centrifugal pump. Environ. Dev. Sustain. (2020)

  22. 22.

    Tiwari, A.K., Kalamkar, V.R.: Performance investigations of solar water pumping system using helical pump under the outdoor condition of Nagpur, India. Renew. Energy 97, 737–745 (2016)

    Article  Google Scholar 

  23. 23.

    Benbaha, N., Zidani, F., Nait-Said, M.-S., Zouzou, S. E. , Boukebbous, S., Ammar, H.: DSPACE validation of improved backstepping optimal energy control for photovoltaic systems. In: 2018 6th International Renewable and Sustainable Energy Conference (IRSEC) (2018)

  24. 24.

    Bouchakour, A.., Borni, A., Brahami, M.: Comparative study of P&O-PI and fuzzy-PI MPPT controllers and their optimisation using GA and PSO for photovoltaic water pumping systems. Int. J. Ambient Energy 1–12 (2019)

  25. 25.

    Boukebbous, S. E., Kerdoun, D.: Study, modeling and simulation of photovoltaic panels under uniform and nonuniform illumination conditions. Revue des Energies Renouv 18(N°2), 257–268 (2015)

    Google Scholar 

  26. 26.

    Kermadi, M., Mekhilef, S., Salam, Z., Ahmed, J., Berkouk, E.M.: Assessment of maximum power point trackers performance using direct and indirect control methods. Int. Trans. Electr. Energy Syst. e12565, 1–18 (2020)

    Google Scholar 

  27. 27.

    Boukebbous, S.E., Djallel, K.: New strategy control of bidirectional quazi z source inverter with batteries and supercapacitors energy storage in grid connected photovoltaic system. Int. J. Power Electr. Drive Syst. 8(1) (2017)

  28. 28.

    Ammar, H., Benbaha, N., Boukebbous, S. E.: P&O control of a photovoltaic pumping system to efficiency improvement using PSIM. In: 2017 International Renewable and Sustainable Energy Conference (IRSEC) (2017)

  29. 29.

    Das, M., Mandal, R.: A comparative performance analysis of direct, with battery, supercapacitor, and battery-supercapacitor enabled photovoltaic water pumping systems using centrifugal pump. Sol. Energy 171, 302–309 (2018)

    Article  Google Scholar 

  30. 30.

    Hassan, W., Kamran, F.: A hybrid PV/utility powered irrigation water pumping system for rural agricultural areas. Cogent Eng. 5(1), 1466383 (2018)

    Article  Google Scholar 

  31. 31.

    Bouzidi, B., Campana, P. E.: Optimization of photovoltaic water pumping systems for date palm irrigation in the Saharan regions of Algeria: increasing economic viability with multiple-crop irrigation. Energy Ecol. Environ. (2020)

  32. 32.

    Ma, T., Yang, H., Lu, L.: Long term performance analysis of a standalone photovoltaic system under real conditions. Appl. Energy 201, 320–331 (2017)

    Article  Google Scholar 

  33. 33.

    Chikh, M., Berkane, S., Mahrane, A., Sellami, R., Yassaa, N.: Performance assessment of a 400 kWp multi- technology photovoltaic grid-connected pilot plant in arid region of Algeria. Renew. Energy 172, 488–501 (2021)

    Article  Google Scholar 

  34. 34.

    Bakelli Y., Kaabeche A.: Optimal size of photovoltaic pumping system using nature‐inspired algorithms. Int. Trans. Electr. Energy Syst., 29(9) e12045 (2019)

  35. 35.

    DOS Santos, W.S., Torres, P.F., Brito, A.U., Manito, A.R.A., Figueiredo, G., Monteiro, W.L., Macêdo, W.N.: A novel method to determine the optimal operating point for centrifugal pumps applied in photovoltaic pumping systems. Sol. Energy 221, 46–59 (2021)

  36. 36.

    Hilarydoss, S.: Suitability, sizing, economics, environmental impacts and limitations of solar photovoltaic water pumping system for groundwater irrigation-a brief review. Environ. Sci. Pollut. Res. Int. 28, 1–20 (2021)

    Article  Google Scholar 

  37. 37.

    Khiareddine, A., Ben Salah, C., Rekioua, D., Mimouni, M.F.: Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system. Energy (Oxf.) 153, 743–762 (2018)

    Article  Google Scholar 

  38. 38.

    Wenham: Applied Photovoltaics, 3rd edn. Earthscan, London (2011)

    Google Scholar 

  39. 39.

    Al-Badi, A., Yousef, H., Al Mahmoudi, T., Al-Shammaki, M., Al-Abri, A., Al-Hinai, A.: Sizing and modelling of photovoltaic water pumping system. Int. J. Sustain. Energy 37(5), 415–427 (2018)

    Article  Google Scholar 

  40. 40.

    Products and Technology, Lorentz.de. https://www.lorentz.de/products-and-technology/. Accessed 26 May 2021

  41. 41.

    Benbaha, N., Zidani, F., Bouchakour, A., Boukebbous, S., Nait-Said, M.S., Ammar, H., Bouhoun, S.: Optimal configuration investigation for photovoltaic water pumping system, case study: in a desert environment at Ghardaia, Algeria. J. Eur. Syst. Autom. 54(4), 549–558 (2021)

    Google Scholar 

  42. 42.

    Gürtürk, M., Benli, H., Ertürk, N.K.: Effects of different parameters on energy—exergy and power conversion efficiency of PV modules. Renew. Sustain. Energy Rev. 92, 426–439 (2018)

    Article  Google Scholar 

  43. 43.

    Zarour, L., Abed, K., Hacil, M., Borni, A.: Control and optimisation of photovoltaic water pumping system using sliding mode. Bull. Polish Acad. Sci. Tech. Sci. 67(3), 605–611 (2019)

    Google Scholar 

  44. 44.

    Boukebbous, S., Kerdoun, D.: Power control of grid connected photovoltaic system assisted by batteries and water pumping energy storage in desert location. Int. J. Renew. Energy Res. 7(4), 2140–2150 (2017)

    Google Scholar 

  45. 45.

    Chahartaghi, M., Hedayatpour Jaloodar, M.: Mathematical modeling of direct-coupled photovoltaic solar pump system for small-scale irrigation. Energy Sources Recovery Util. Environ. Eff., pp. 1–22 (2019)

  46. 46.

    Jurasz, J., Mikulik, J.: Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective. Bull. Pol. Acad. Sci. Tech. Sci. 65(6), 859–869 (2017)

    Google Scholar 

  47. 47.

    Khalid, A.M., Mitra, I., Warmuth, W., Schacht, V.: Performance ratio—crucial parameter for grid connected PV plants. Renew. Sustain. Energy Rev. 65, 1139–1158 (2016)

    Article  Google Scholar 

  48. 48.

    Aarich, N., Raoufi, M., Bennouna, A., Erraissi, N.: Outdoor comparison of rooftop grid-connected photovoltaic technologies in Marrakech (Morocco). Energy Build. 173, 138–149 (2018)

    Article  Google Scholar 

  49. 49.

    Al Ali, M., Emziane, M.: Performance analysis of rooftop PV systems in Abu Dhabi. Energy Procedia 42, 689–697 (2013)

    Article  Google Scholar 

  50. 50.

    Piliougine, M., Cañete, C., Moreno, R., Carretero, J., Hirose, J., Ogawa, S., Sidrach-de-Cardona, M.: Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates. Appl. Energy 112, 626–634 (2013)

    Article  Google Scholar 

  51. 51.

    Kazem, H.A., Al-Waeli, A.H., Al-Kabi, A.H., Al-Mamari, A.: Technoeconomical assessment of optimum design for photovoltaic water pumping system for rural area in Oman. Int. J. Photoenergy (2015)

  52. 52.

    Nogueira, C.E.C., Bedin, J., Niedzialkoski, R.K., de Souza, S.N.M., das Neves, J.C.M.: Performance of monocrystalline and polycrystalline solar panels in a water pumping system in Brazil. Renew. Sustain. Energy Rev. 51, 1610–1616 (2015)

    Article  Google Scholar 

Download references

Funding

This project was financially supported by the Directorate General for Scientific Research and Technological Development—Algerian Ministry of Higher Education and Scientific Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seif Eddine Boukebbous.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boukebbous, S.E., Benbaha, N., Bouchakour, A. et al. Experimental performance assessment of photovoltaic water pumping system for agricultural irrigation in semi-arid environment of Sebseb—Ghardaia, Algeria. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00435-8

Download citation

Keywords

  • Photovoltaic
  • Pumping system
  • Agricultural irrigation
  • Performance assessment
  • Semi-arid environment