Skip to main content

Investigation of ecological parameters of a gas turbine combustion chamber with steam injection for the floating production, storage, and offloading vessel

Abstract

The article is dedicated to the investigation of the possibility of using the contact type gas turbine cycle with steam injection into the combustion chamber for the floating production, storage, and offloading vessel in order to increase the specific power and efficiency and reduce emissions of toxic components. A new approach is proposed, associated with the use of the two-stage injection of superheated steam into a gas turbine combustion chamber operating on associated gas. In this case, ecological steam is injected to the primary zone of the chamber to reduce emissions of nitrogen oxides, and power steam is injected to the dilution zone of the chamber in order to increase the power of the installation. This approach can be used in gas turbine engines of various modifications and manufacturers. The thermodynamic parameters of the thermal scheme of a gas–steam turbine operating on associated gas have been determined. Three-dimensional calculations of ecological parameters of a combustion chamber have been carried out, making it possible to determine the rational ratio of the ecological and power steam flow rates to minimize emissions of nitrogen oxides. The results obtained can be used for the modernization of existing and refinement of new samples of environmentally friendly fuel-burning devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

\({{C}_{N}}_{e}\) :

Specific hourly fuel consumption, kg/(kW·h)

\({c}_{p}{|}_{{T}_{1}}^{{T}_{2}}\) :

Average mass heat capacity of the working fluid in the temperature range T1T2 kJ/(kg·K)

d :

: Relative gas/steam content

\({E}_{k}\) :

Activation energy, J/mol

\({G}_{\mathrm{s}}\) :

Steam flow rate, kg/s

\({G}_{\mathrm{T}}\) :

Gas flow rates at turbine inlet, kg/s

\({g}_{\text{s}}\) :

Relative steam mass flow rate

\({H}_{f}\) :

The lower calorific value of fuel, kJ/kg

\({h}_{s}\) :

Enthalpy of steam, kJ/kg

\({L}_{0}\) :

Stoichiometric ratio, kg/kg

\({M}_{i}\) :

Molecular weight of component i, kg/kmol

\({N}_{{e}_{\text{sp}}}\) :

Specific power, kJ/kg

\(P\) :

Pressure, Pa

\(q\) :

: Heat supplied, kJ/kg

\({R}_{i}\) :

Rate of component’s formation/destruction, mol/(cm3·s)

\({T}\) :

Temperature, K

\(t\) :

Time, s

\(v\) :

Velocity, m/s

\({x}_{i}\) :

Coordinates, m

\({Y}_{i}\) :

Mass fraction of component i

\(\alpha\) :

Air excess coefficient

\({\alpha }_{\varepsilon }\) :

Inverse effective Prandtl numbers for ε

\({\alpha }_{k}\) :

Inverse effective Prandtl numbers for k

\(\varepsilon\) :

Turbulence kinetic energy dissipation, m2/s3

\({\eta }_{\text{CC}}\) :

Combustion efficiency

\({\eta }_{e}\) :

The efficiency of the turbine aggregate

\({\eta }_{{m}_{\text{T}}}\) :

Mechanical efficiency of the turbines

\({\eta }_{\text{RG}}\) :

Mechanical efficiency of the reducer

\(k\) :

Turbulence kinetic energy, m2/s2

\({\pi }_{\text{c}}\) :

Compression ratio

ρ:

: Mass density, kg/m3

\({\tau }_{st}\) :

Stress tensor, N/m2

CC:

Combustion chamber

CGSTA:

Contact gas–steam turbine aggregate

FPSO:

Floating production, storage, and offloading

GSC:

: Gas–steam condenser

GT:

Generator’s turbine

HPC:

High-pressure compressor

HPT:

High-pressure turbine

HRSG:

Heat-recovery steam generator

LPC:

Low-pressure compressor

LPT:

Low-pressure turbine

STIG:

Steam-injected gas turbine

References

  1. 1.

    Offshore Magazine. Leadon FPSO delivered on time, complete, within budget. https://www.offshore-mag.com/production/article/16759844/leadon-fpso-delivered-on-time-complete-within-budget (2002). Accessed 10 December 2020

  2. 2.

    ENI. Block 15–06 East Hub Development Project. https://www.eni.com/assets/documents/brochure_eni_angola_ese_web.pdf (2016). Accessed 10 December 2020

  3. 3.

    Aker Floating Production. FPSO Dhirubhai-1. http://www.akerfloatingproduction.com/s.cfm/3-12/FPSO-Dhirubhai-1-Operation (2009). Accessed 12 January 2021

  4. 4.

    Ocyan. FPSO Pioneiro de Libra. http://www.ocyansa.com/en/fleet/fpso-pioneiro-de-libra (2017). Accessed 25 June 2018

  5. 5.

    Ocyan. FPSO Cidade de Itajaí. https://api.ocyan-sa.com/sites/default/files/2018-09/cidade_do_itajai_0.pdf (2017). Accessed 28 June 2018

  6. 6.

    Offshore Technology. Triton Oil Field, North Sea Central. https://www.offshore-technology.com/projects/triton/ (2018). Accessed 05 July 2018

  7. 7.

    Siemens. We Power the World with Innovative Gas Turbines: Siemens Gas Turbine Portfolio. https://new.siemens.com/global/en/products/energy/power-generation/gas-turbines.html (2020). Accessed 05 February 2021

  8. 8.

    The UK Oil and Gas Industry Association Ltd. Offshore Gas Turbines and Dry Low NOx Burners. An Analysis of the Performance Improvement. https://silo.tips/download/offshore-gas-turbines-and-dry-low-nox-burners-an-analysis-of-the-performance-imp (2018). Accessed 12 January 2021

  9. 9.

    Cherednichenko, O., Serbin, S., Dzida, M.: Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units. Polish Marit. Res. 3(103), 181–187 (2019)

    Article  Google Scholar 

  10. 10.

    Wall, M., Lee, R., Frost, S.: Offshore gas turbines (and major driven equipment) integrity and inspection guidance notes, ESR Technology Ltd. https://www.hse.gov.uk/research/rrpdf/rr430.pdf (2006). Accessed 20 June 2017

  11. 11.

    GE Aviation. Two 42 MW GE Gas Turbines Power Triton FPSO. http://www.mce-asic.co.uk/engines/docs/marine/case-history/42mw-triton-case-history.pdf (2016). Accessed 25 June 2017

  12. 12.

    SBM Offshore. FPSO Cidade de Maricá - FPSO Cidade de Saquarema. Floating Production Storage and Offloading. https://www.sbmoffshore.com/wp-content/uploads/2016/05/CdS-CdM.pdf (2016). Accessed 04 July 2018

  13. 13.

    Carapellucci, R., Giordano, L.: Regenerative gas turbines and steam injection for repowering combined cycle power plants: design and part-load performance. Energy Convers. Manage. 227(113519), 1–15 (2021)

    Google Scholar 

  14. 14.

    Abubaker, A.M., Magableh, M.N.A., Ahmad, A.D., Najjar, Y.S.H.: Efficiency boosting and steam saving for a steam-injected gas turbine engine: optimization study of the running conditions. J. Energy Eng. 147, 1 (2021)

    Article  Google Scholar 

  15. 15.

    Mitsubishi Power. Smart-AHAT (Advanced Humid Air Turbine). https://power.mhi.com/products/gasturbines/technology/smart-ahat (2021). Accessed 29 August 2021

  16. 16.

    Sehat, A., Ommi, F., Saboohi, Z.: Effects of steam addition and/or Injection on the combustion characteristics. A review. Therm. Sci. 25(3A), 1625–1652 (2021)

    Article  Google Scholar 

  17. 17.

    Kayadelen, H.K., Ust, Y.: Thermoenvironomic evaluation of simple, intercooled, STIG, and ISTIG cycles. Int. J. Energy Res. 1–23 (2018)

  18. 18.

    Varia, N., Patel, D., Reddy, B.V., Srinivas, T.: Effects of Steam Injection on the Performance of Natural Gas Combined Cycle Power Generation System. Proceedings of the Canadian Society for Mechanical Engineering International Congress, Toronto, Canada, 1–4 (2018)

  19. 19.

    Sharafoddini, R., Habibi, M.: Numerical study of water vapor injection in the combustion chamber to reduce gas turbine fuel consumption. J. Appl. Fluid Mech. 13(3), 1047–1054 (2020)

    Article  Google Scholar 

  20. 20.

    6B.03 gas turbine. https://www.ge.com/gas-power/products/gas-turbines/6b (2021). Accessed 29 August 2021.

  21. 21.

    Cheng, D.Y., Nelson, A.L.C.: The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. Proceeding of ASME Turbo Expo 2002, Amsterdam, the Netherlands. GT-2002–30119, 1–8 (2002)

  22. 22.

    Sahai, V., Cheng, D.Y.: Reduction of NOx and CO to below 2 ppm in a diffusion flame. Proceeding of ASME Turbo Expo 2003 Power for Land, Sea, and Air, Atlanta, Georgia, USA. GT2003–38208, 1–9 (2003)

  23. 23.

    Rao, A.: Evaporative Gas Turbine (EvGT)/Humid Air Turbine (HAT) Cycles. In: Handbook of Clean Energy Systems: John Wiley & Sons, Ltd, 1–18 (2015)

  24. 24.

    Guillet, R.: The humid combustion to protect environment and to save the fuel: the water vapor pump and Maisotsenko cycle examples. Int. J. Energy Clean Environ. 12, 259–271 (2004)

    Article  Google Scholar 

  25. 25.

    Nelson, A.: Quick and economical power augmentation and emission control using new advancements in combustion turbine steam injection. Cheng Power Systems. http://www.intpower.com/cln/PowerGen(6B)Paper.pdf (2001). Accessed 04 July 2018

  26. 26.

    Serbin, S., Mostipanenko, A., Matveev, I.: Investigation of the Working Processes in a Gas Turbine Combustor with Steam Injection. Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, USA, AJTEC2011–44042, 1–6 (2011)

  27. 27.

    Serbin, S., Burunsuz, K.: Numerical study of the parameters of a gas turbine combustion chamber with steam injection operating on distillate fuel. Int. J. Turbo Jet Eng. (2020). https://doi.org/10.1515/tjeng-2020-0029

    Article  Google Scholar 

  28. 28.

    Bondin, Y.N., Krivutsa, V.A., Movchan, S.N., Romanov, V.I., Kolomeev, V.N., Shevtsov, A.P.: Operation experience of a gas turbine unit GPU-16K with steam injection. Gas Turb. Technol. 5, 18–20 (2004). ((in Russian))

    Google Scholar 

  29. 29.

    Romanovsky, G.F., Washchilenko, N.V., Serbin, S.I.: Theoretical bases of designing ship gas turbine units. Ukrainian State Maritime Technical University, Mikolayiv (2002).. ((in Ukraine))

    Google Scholar 

  30. 30.

    Nguyen, T., Elmegaard, B., Pierobon, L., Haglind, F., Breuhaus, P.: Modelling and analysis of offshore energy systems on North Sea oil and gas platforms. 53-rd International Conference of Scandinavian Simulation Society, SIMS. https://www.researchgate.net/publication/263973093_Modelling_and_analysis_of_offshore_energy_systems_on_North_Sea_oil_and_gas_platforms/figures?lo=1 (2012). Accessed 12 November 2018

  31. 31.

    Serbin, S.I., Kozlovskyi, A.V., Burunsuz, K.S.: Investigations of non-stationary processes in low emissive gas turbine combustor with plasma assistance. IEEE Trans. Plasma Sci. 44(12), 2960–2964 (2016)

    Article  Google Scholar 

  32. 32.

    Serbin, S.I., Matveev, I.B.: Theoretical and experimental investigations of the plasma-assisted combustion and reformation system. IEEE Trans. Plasma Sci. 38(12), 3306–3312 (2010)

    Article  Google Scholar 

  33. 33.

    Matveev, I.B., Serbin, S.I., Washchilenko, N.V.: Plasma-assisted treatment of sewage sludge. IEEE Trans. Plasma Sci. 44(12), 3023–3027 (2016)

    Article  Google Scholar 

  34. 34.

    Matveev, I., Serbin, S., Mostipanenko, A.: Numerical optimization of the “Tornado” combustor aerodynamic parameters. Collection of Technical Papers - 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, AIAA 2007–391. 7, 4744‒4755 (2007)

  35. 35.

    Matveev, I., Serbin, S.: Experimental and numerical definition of the reverse vortex combustor parameters. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2006–0551. 6662‒6673 (2006)

  36. 36.

    Serbin, S.I., Matveev, I.B., Goncharova, N.A.: Plasma assisted reforming of natural gas for GTL. Part I. IEEE Trans. Plasma Sci. 42(12), 3896–3900 (2014)

    Article  Google Scholar 

  37. 37.

    Serbin, S.I., Matveev, I.B., Mostipanenko, G.B.: Plasma-Assisted Reforming of Natural Gas for GTL: Part II - Modeling of the Methane-Oxygen Reformer. IEEE Trans. Plasma Sci. 43(12), 3964–3968 (2015)

    Article  Google Scholar 

  38. 38.

    Launder, B.E., Spalding, D.B.: Lectures in Mathematical Models of Turbulence. Academic Press, London (1972)

    MATH  Google Scholar 

  39. 39.

    Meloni, R.: Pollutant emission validation of a heavy-duty gas turbine burner by CFD modeling. Machines 2, 81–97 (2013)

    Article  Google Scholar 

  40. 40.

    Matveev, I.B., Serbin, S.I., Vilkul, V.V., Goncharova, N.A.: Synthesis gas afterburner based on an injector type plasma-assisted combustion system. IEEE Trans. Plasma Sci. 43(12), 3974–3978 (2015)

    Article  Google Scholar 

  41. 41.

    Gatsenko, N.A., Serbin, S.I.: Arc plasmatrons for burning fuel in industrial installations. Glass Ceram. 51(11–12), 383–386 (1995)

    Google Scholar 

  42. 42.

    Matveev, I., Serbin, S., Lux, S.M.: Efficiency of a hybrid-type plasma-assisted fuel reformation system. IEEE Trans. Plasma Sci. 36(6), 2940–2946 (2008)

    Article  Google Scholar 

  43. 43.

    Matveev, I.B., Tropina, A.A., Serbin, S.I., Kostyuk, V.Y.: Arc modeling in a plasmatron channel. IEEE Trans. Plasma Sci. 36(1), 293–298 (2008)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serhiy Serbin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serbin, S., Burunsuz, K., Dzida, M. et al. Investigation of ecological parameters of a gas turbine combustion chamber with steam injection for the floating production, storage, and offloading vessel. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00433-w

Download citation

Keywords

  • Gas turbine
  • Combustion chamber
  • Steam injection
  • Marine power plant