Skip to main content

Theoretical analysis of power generation applying supercritical steam and high-pressure combustion chamber consuming biomass slurry

Abstract

The work presents a theoretical analysis of power generation based on supercritical steam generated by a boiler operating with high-pressure combustion chamber and consuming biomass-water slurry. Steam generated at 30 MPa is injected into turbines and reheated before proceeding to the second turbine stage. The high-pressure flue gas leaving the boiler is used to reheat that steam, and thus, cooled to temperatures below the dewpoints of alkaline species in it, therefore allowing their removal before entering the gas turbines. The exergetic efficiency is chosen as optimization function for the boiler, and the 1st Law efficiency for the whole power generation process. It is shown that a lower efficiency might be expected when compared the predicted by other similar theoretical studies. Such is mainly due the power consumed by compressing the air required by the boiler, the celling temperature of stream injected into the gas turbine, and the amount of energy spent on the vaporization of the water added to form the fuel slurry. A critical analysis of past and current proposal for power generation based on biomass describes how many technical obstacles have been downplayed in previous works.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. 1.

    All 1st Law efficiencies are based on the fuel LHV.

  2. 2.

    www.csfmb.com.

References

  1. 1.

    ANEEL, Entreprizes in Operation, Management Report, chap 1.1, p 4 (2018). http://www.aneel.gov.br/documents/656877/14854008/Boletim+de+Informa%C3%A7%C3%B5es+Gerenciais+-+1%C2%BA+trimestre+2018/01298785-3069-c0e7-d9c8-a2cca07cddd9

  2. 2.

    ANEEL, Thermelectric Units by Type, General Information Report, chap 1.2, p 5 (2016). http://www.aneel.gov.br/documents/656877/14854008/Boletim+de+Informa%C3%A7%C3%B5es+Gerenciais+-+1%C2%BA+trimestre+2018/01298785-3069-c0e7-d9c8-a2cca07cddd9

  3. 3.

    de Souza-Santos, M.L., Chavez, J.V.: Preliminary studies on advanced power generation based on combined cycle using a single high-pressure fluidized bed boiler and consuming sugar-cane bagasse. Fuel 95, 221–225 (2012)

    Article  Google Scholar 

  4. 4.

    de Souza-Santos, M.L., Chavez, J.V.: development of studies on advanced power generation based on combined cycle using a single high-pressure fluidized bed boiler and consuming sugar cane bagasse. Energy Fuels 26, 1952–1963 (2012). https://doi.org/10.1021/ef2019935

    Article  Google Scholar 

  5. 5.

    de Souza-Santos, M.L., Chavez, J.V.: Second round on advanced power generation based on combined cycle using a single high-pressure fluidized bed boiler and consuming biomass. Open Chem. Eng. J. 6, 41–47 (2012). https://doi.org/10.2174/1874123101206010041

    Article  Google Scholar 

  6. 6.

    de Souza-Santos, M.L., Ceribeli, K.: Technical evaluation of a power generation process consuming municipal solid waste. Fuel 108, 578–585 (2012). https://doi.org/10.1016/j.fuel.2012.12.037

    Article  Google Scholar 

  7. 7.

    Anthony, E.J.: Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Prog. Energy Combust. Sci. 21, 239–268 (1995). https://doi.org/10.1016/0360-1285(95)00005-3

    Article  Google Scholar 

  8. 8.

    High Pressure Feeder and Method of Operating to Feed Granular or Fine Materials, US Patent Number 20110146153 A1. www.google.com/patents/US20110146153. Accessed on 24 Nov 2013

  9. 9.

    Power Technology: (2019). https://www.power-technology.com/projects/karita/. Accessed on 26 Aug 2020.

  10. 10.

    Satoh, T.: The large capacity gas turbine for pressurized fluidized bed combustion (PFBC) boiler combined cycle power plant. Bullet. GTSJ (2003). https://www.gtsj.org/publication/bulletin/bulletin2003/bulletin2003_01gtt01.pdf. Accessed on 26 Aug 2020

  11. 11.

    Horner, M.W.: Simplified IGCC with hot fuel gas combustion (85-JPGC-GT-13). In: ASME/IEEE power generation conference. Milwaukee: Wisconsin (1985)

  12. 12.

    Scandrett, L.A., Clift, R.: The thermodynamics of alkali removal from coal-derived gases. J. Inst. Energy 57, 391–397 (1984)

    Google Scholar 

  13. 13.

    Spacil, H.S., Luthura, K.L.: Volatilization/condensation of alkali salts in a pressurized fluidized bed coal combustor/gas turbine combined cycle. J. Electrochem. Soc. 129(9), 2119–2126 (1982). https://doi.org/10.1149/1.2124391

    Article  Google Scholar 

  14. 14.

    Oakey, J., Simms, N., Kilgallon, P.: Gas turbines: gas cleaning requirements for biomass-fired systems. Mater. Res. 7(1), 17–25 (2004). https://doi.org/10.1590/S1516-14392004000100004

    Article  Google Scholar 

  15. 15.

    Basu, P.: Combustion and Gasification in Fluidized Beds. CRC Press, New York (2006)

    Book  Google Scholar 

  16. 16.

    de Souza-Santos, M.L.: Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operation, 2nd edn. CRC Press, New York (2010)

    Book  Google Scholar 

  17. 17.

    Lehtovaara, A., Mojtahedi, W.: Ceramic-filter behavior in gasification. Bioresour. Technol. 46, 113–118 (1993). https://doi.org/10.1016/0960-8524(93)90061-F

    Article  Google Scholar 

  18. 18.

    Pedersen, K., Malmgreem-Hansen, B., Petersen, P.: Catalytic cleaning of hot gas filtration. Biomass for Energy and the Environment. In: Chartier, P., Ferrero, G.L., Henius, U.M., Hultberg, S., Sachau, J., Wiinbland, M. (eds). Proceedings of 9th European Bioenergy Conference, Copenhagen, Denmark, June 24–27, 1996, p. 1312–1317. Pergamon Press (1996)

  19. 19.

    Dedini Industries. www.dedini.com.br/index.php?lang=en. Accessed on 16 Oct 2018

  20. 20.

    de Souza-Santos, M.L.: Modelling and Simulation of Fluidized-Bed Boilers and Gasifiers for Carbonaceous Solids. Ph.D. Dissertation, University of Sheffield, United Kingdom (1987). etheses.whiterose.ac.uk/1857/1/DX196027.pdf. Accessed on 3 March 2014

  21. 21.

    de Souza-Santos, M.L.: Comprehensive modelling and simulation of fluidized-bed boilers and gasifiers. Fuel 68, 1507–1521 (1989). https://doi.org/10.1016/0016-2361(89)90288-3

    Article  Google Scholar 

  22. 22.

    Rabi, J.A., de Souza-Santos, M.L.: Incorporation of a two-flux model for radiative heat transfer in a comprehensive fluidized bed simulator. Part I: Preliminary theoretical investigations. Therm. Eng. 3: 64–70 (2003). ojs.c3sl.ufpr.br/ojs2/index.php/reterm/article/view/3516. Accessed 3 March 2014

  23. 23.

    Rabi, J.A., de Souza-Santos, M.L.: Incorporation of a two-flux model for radiative heat transfer in a comprehensive fluidized bed simulator. Part II: Numerical results and assessment. Therm. Eng. 4: 49–54 (2004). ojs.c3sl.ufpr.br/ojs/index.php/reterm/article/view/3476. Accessed on 3 March 2014

  24. 24.

    de Souza-Santos, M.L.: A new version of CSFB, comprehensive simulator for fluidized bed equipment. Fuel 86, 1684–1709 (2007). https://doi.org/10.1016/j.fuel.2006.12.001

    Article  Google Scholar 

  25. 25.

    Rabi, J.A., de Souza-Santos, M.L.: Comparison of two model approaches implemented in a comprehensive fluidized-bed simulator to predict radiative heat transfer: results for a coal-fed boiler. Comput. Exp. Simul. Eng. Sci. 3, 87–105 (2008)

    Google Scholar 

  26. 26.

    de Souza-Santos, M.L.: Comprehensive simulator (CSFMB) applied to circulating fluidized bed boilers and gasifiers. Open Chem. Eng. J. 2: 106–118 (2008). www.benthamscience.com/open/tocengj/articles/V002/106TOCENGJ.pdf. Accessed on 3 March 2014

  27. 27.

    de Souza-Santos, M.L.: CSFB applied to fluidized-bed gasification of special fuels. Fuel 88, 826–833 (2009). https://doi.org/10.1016/j.fuel.2008.10.035

    Article  Google Scholar 

  28. 28.

    Krzywanski, J., et al.: A 1.5D model of a complex geometry laboratory scale fluidized bed CLC equipment. Powder Technol. (2016). Doi:https://doi.org/10.1016/j.powtec.2016.09.041. http://www.sciencedirect.com/science/article/pii/S0032591016306258. Accessed on 19 Oct 2020

  29. 29.

    Zylka, A., Krzywanski, J., Czakiert, T., Idziak, K., Sosnowski, M., De Souza-Santos, M.L., Sztekler, K., Nowak, W.: Modeling of the Chemical Looping Combustion of hard coal and biomass using ilmenite as the oxygen carrier. Energies (2020). https://doi.org/10.3390/en13205394

    Article  Google Scholar 

  30. 30.

    de Souza-Santos, M.L.: Application of comprehensive simulation of fluidized-bed reactors to the pressurized gasification of biomass. J. Brazil. Soc. Mech. Sci. 16, 376–383 (1994)

    Google Scholar 

  31. 31.

    de Souza-Santos, M.L., Ceribeli, K.B.: Fuel-slurry integrated gasifier/gas turbine (FSIG/GT) alternative for power generation applied to municipal solid waste (MSW). Energy Fuels 27(12), 7696–7713 (2013). https://doi.org/10.1021/ef401878v

    Article  Google Scholar 

  32. 32.

    de Souza-Santos, M.L., Beninca, W.A.: New strategy of fuel-slurry integrated gasifier/gas turbine (FSIG/GT) alternative for power generation applied to biomass. Energy Fuels 28(4), 2697–2707 (2014). https://doi.org/10.1021/ef500317a

    Article  Google Scholar 

  33. 33.

    de Souza-Santos, M.L., Lima, E.H.S.: Introductory study on fuel-slurry integrated gasifier/gas turbine (FSIG/GT) alternative for power generation applied to high-ash or low-grade coal. Fuel 143, 275–284 (2015). https://doi.org/10.1016/j.fuel.2014.11.060

    Article  Google Scholar 

  34. 34.

    de Souza-Santos, M.L., Bernal, A.F.B., Rodriguez-Torres, A.F.: New developments on fuel-slurry integrated gasifier/gas turbine (FSIG/GT) alternative for power generation applied to biomass; configuration requiring no steam for gasification. Energy Fuels 29(6), 3879–3889 (2015). https://doi.org/10.1021/acs.energyfuels.5b00775

    Article  Google Scholar 

  35. 35.

    de Souza-Santos, M.L.: Very high-pressure fuel-slurry integrated gasifier/gas turbine (FSIG/GT) power generation applied to biomass. Energy Fuels 29, 8066–8073 (2015). https://doi.org/10.1021/acs.energyfuels.5b02093

    Article  Google Scholar 

  36. 36.

    de Souza-Santos, M.L.: Proposals for power generation based on processes consuming biomass-glycerol slurries. Energy 120(1), 959–974 (2017)

    Article  Google Scholar 

  37. 37.

    de Souza-Santos, M.L., Camara, M.A.: Theoretical study on the effect of glycerol fraction in slurries with biomass consumed by a power generation process. Energy Fuels (2017). https://doi.org/10.1021/acs.energyfuels.7b02996

    Article  Google Scholar 

  38. 38.

    Cadavez, C., de Souza-Santos, M.L.: Efficiency of a power generation alternative regarding the composition of feeding biomass-glycerol slurry; Theoretical Assessment. Energy (2020). https://doi.org/10.1016/j.energy.2020.118967

    Article  Google Scholar 

  39. 39.

    de Souza-Santos, M.L.: Application of comprehensive simulation to pressurized fluidized bed hydroretorting of shale. Fuel 73, 1459–1465 (1994). https://doi.org/10.1016/0016-2361(94)90063-9

    Article  Google Scholar 

  40. 40.

    de Souza-Santos, M.L.: Theoretical models for rates of heterogeneous reactions during combustion and gasification of liquid fuels in fluidized beds. Brazil. J. Chem. Eng. 35(2), 679–690 (2018). https://doi.org/10.1590/0104-6632.20180352s20160495

    Article  Google Scholar 

  41. 41.

    de Souza-Santos, M.L.: A study on thermo-chemically recuperated power generation systems using natural gas. Fuel 76, 593–601 (1997). https://doi.org/10.1016/S0016-2361(97)00059-8

    Article  Google Scholar 

  42. 42.

    Evans, R.J., Knight, R.A., Onischak, M., Babu S.P.: Process and environmental assessment of the RENUAS process. In: Presented at symposium on energy from biomass and wastes, sponsored by the institute of gas technology. Washington, DC, April 6–10 (1986)

  43. 43.

    He, W., Park, C.S., Norbeck, J.N.: A rheological study on the pumpability of co-mingled biomass and coal slurries. In: International Pittsburgh Coal Conference 2008, Pittsburgh, PA (2009). www.docin.com/p-46581930.html. Accessed on 03 March 2014

  44. 44.

    He, W., Park, C.S., Norbeck, J.N.: A rheological study of comingled biomass and coal slurries with hydrothermal pretreatment. Energy Fuels 23, 4763–4767 (2009). https://doi.org/10.1021/e9000852

    Article  Google Scholar 

  45. 45.

    Shijiazhuang Minerals Equipment Co., LTD.: Personal message exchanged on August 4th, 2020. sales33@cnmineralsequipment.com. https://www.qualityslurrypump.com/about-us/

  46. 46.

    Gresh M. T., Sassos M. J., Watson A., Axial air compressors: maintaining peak efficiency. turbolab.tamu.edu/proc/turboproc/T21/T21173–181.pdf. Accessed on March 2014

  47. 47.

    Boyce P. M.: Axial flow compressors. http://www.netl.doe.gov/File%20Library/Research/Coal/energy%20systems/turbines/handbook/2-0.pdf. accessed on Aug 2015

  48. 48.

    Siemens Steam Turbine SST-6000. https://www.energy.siemens.com/hq/en/fossil-power-generation/steam-turbines/sst-6000.htm#content=Technical%20Data. Accessed on June 2017

  49. 49.

    Siemens Steam Turbine portfolio brochure. https://assets.new.siemens.com/siemens/assets/api/uuid:c3192f5e-0979-4c71-9028-45f1913a80f2/version:1560517188/steam-turbine-overview-2019.pdf. Accessed on Oct 2019

  50. 50.

    Mitsubishi Heavy Industries. Gas Turbines (2011). https://www.mhi.com/products/ category/gas_turbin.html

  51. 51.

    Veres J. P. Centrifugal and axial pump design and off-design performance prediction. NASA Technical Memorandum 106745. www.grc.nasa.gov/WWW/RTT/docs/Veres_1994.pdf. Accessed March 2014

  52. 52.

    Environmental Protection Agency, Technology Characterization: Steam Turbines. www.epa.gov/chp/documents/catalog_chptech_steam_turbines.pdf. Accessed on 03 March 2014

  53. 53.

    Beninca, W.A.: Advanced studies on power generation processes based on fluidized beds consuming biomass. 2012. 87 f. M. Sc. Dissertation-Universidade Estadual de Campinas, Faculty of Mechanical Engineering, Campinas, SP. http://www.repositorio.unicamp.br/handle/REPOSIP/263448

  54. 54.

    Larson, E.D., Williams, R.H., Leal, M.R.L.V.: A review of biomass integrated gasifier/gas turbine combined cycle technology and its application in sugarcane industries, with an analysis for Cuba. Energy Sustain. Dev. 5(1), 54–76 (2001). https://doi.org/10.1016/S0973-0826(09)60021-1

    Article  Google Scholar 

  55. 55.

    Manente, G., Lazzaretto, A.: Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles. Biomass Bioenergy 69, 155–168 (2014). https://doi.org/10.1016/j.biombioe.2014.07.016

    Article  Google Scholar 

  56. 56.

    Consonni, S., Larson, E.D.: Biomass-gasifier/aeroderivative gas turbine combined cycles: Part A technologies and performance modeling. J. Eng. Gas Turb. Power 118(3), 507–515 (1996). https://doi.org/10.1115/1.2816677

    Article  Google Scholar 

  57. 57.

    Consonni, S., Larson, E.D.: Biomass-gasifier/aeroderivative gas turbine combined cycles: Part B performance calculations and economic assessment. J. Eng. Gas Turb. Power 118(3), 516–525 (1996). https://doi.org/10.1115/1.2816678

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful for the grant provided by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcio L. de Souza-Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mantovani, H.B., de Souza-Santos, M.L. Theoretical analysis of power generation applying supercritical steam and high-pressure combustion chamber consuming biomass slurry. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00432-x

Download citation

Keywords

  • Power generation
  • Biomass
  • Combustion
  • Supercritical boiler
  • Turbine
  • Simulation