Skip to main content

Comparison of wind profile estimation methods for calculating offshore wind potential for the Northeast region of Brazil

Abstract

Over the years, the need for energy consumption has been increasing in all sectors of society. Consequently, discussions about renewable energy sources such as wind, solar, hydraulic and wave energy are increasingly being guided in all global environmental political discussions. More specifically, wind energy, mainly offshore, has been increasingly highlighted due to the large area to be explored. Thus, the objective of this work was to study the offshore wind profiles using five different estimation methodologies, verifying which is the best and worst scenario of wind potential. For this purpose, data from the SODAR of “Ômega Energia” located in the state of Maranhão, in the Northeast of Brazil were used; the data from the ERA5 Reanalysis and the data from the Wobben Windpower E-82 E4 wind turbine, with a nominal power of 3000 KW (3 MW). The results showed that the best method for estimating wind profiles both for this location and for the entire Northeast region of Brazil was the method using Taylor & Yelland [28] roughness estimate calculation, which considers a stable atmosphere. Comparatively, the best estimate scenario showed a gain of 0.65 MW of power generation when compared to the worst scenario.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Arya, P.S.: Parameterizing the height of the stable atmospheric boundary layer. J. Appl. Meteor. 20, 1192–1202 (1981)

    Article  Google Scholar 

  2. 2.

    Businger, J.A., Wyngaard, J.C., Izumi, Y., Bradley, E.F.: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181–189 (1971)

    Article  Google Scholar 

  3. 3.

    Carmo, L.F.R., Palmeira, A.C.P.A., Antonio, C.F.J.L.: Estimation of wind profile and offshore wind potential for Cabo Frio coast. Revista S&G 15(1), 46–52 (2020)

    Article  Google Scholar 

  4. 4.

    Centro de Pesquisas em Energia Elétrica (CEPEL) (2001). Atlas de Potencial Eólico Brasileiro. Ed. CEPEL, Rio de Janeiro, RJ. http://www.cresesb.cepel.br/index.php?section=publicacoes&task=livro&cid=1. Accessed 5 Jan 2020

  5. 5.

    Chalikov, D.V.: The parametrization of the wave boudary layer. J. Phys. Oceanogr. 25, 1333–1349 (1995)

    Article  Google Scholar 

  6. 6.

    Charnock, H.: Wind stress on a water surface. Quart. J. Royal Met. Soc. 81(639), 1955 (1955)

    Google Scholar 

  7. 7.

    Recommended Practice - DNV-RP-C205 (2014). Environmental Conditions and Environmental Loads.

  8. 8.

    Donelan, M. A. (1990). Air-Sea Interaction, from The Sea: Ocean Engineering Science, Volume 9 (two volume set), John Wiley & Sons

  9. 9.

    Donelan, M.A., Dobson, F.W., Smith, S.D., Anderson, R.J.: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr. 23, 2143–2149 (1993)

    Article  Google Scholar 

  10. 10.

    Dyer, A.J.: A review of flux-profile relations. Bound. Layer Meteor. 1, 363–372 (1974)

    Article  Google Scholar 

  11. 11.

    Dyrbye, C., Hansen, S.O.: Wind Loads on Structures. John Wiley and Sons, Chichester, England (1997)

    Google Scholar 

  12. 12.

    Empresa de Pesquisa Energética (EPE) (2020). Perspectivas e caminhos para a energia eólica marítima, ROADMAP Eólica Offshore - Brasil. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-456/Roadmap_Eolica_Offshore_EPE_versao_R2.pdf. Accessed 24 July 2020

  13. 13.

    Hansen, K.S., Barthelmie, R.J., Jensen, L.E., Sommer, A.: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energ. 15(1), 183 (2012)

    Article  Google Scholar 

  14. 14.

    He, Y.C., Fu, J.Y., Shu, Z.R., Chan, P.W., Wua, J.R., Li, Q.S.: A comparison of micrometeorological methods for marine roughness estimation at a coastal area. J. Wind Eng. Ind. Aerodyn, 195, 104010 (2019)

  15. 15.

    Kantha, L.H., Clayson, C.A.: Small Scale Processes in Geophysical Fluid Flows, Academic Press, San Diego, 883 pp, 2000 (2000)

  16. 16.

    JCSS (Joint Committee on Structural Safety) (2001). Probabilistic Model Code, Part 2: Loads

  17. 17.

    Lange, B., Larsen, S., Højstrup, J., Barthelmie, R.: Importance of thermal effects and sea surface roughness for offshore wind resource assessment. J. Wind Eng. Ind. Aerodyn. 92(11), 959–988 (2004)

    Article  Google Scholar 

  18. 18.

    Monin, A.S., Obukhov, A.M.: Basic Laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk., SSSR Geophiz. Inst, 24(151), (1954)

  19. 19.

    Montezano, B.E.M.: Modelo Dinâmico de Visualização de um Aerogerador com Velocidade de Rotação Variável e Controle de Passo em VRML. Projeto de Graduação, Departamento de Engenharia Elétrica, UFRJ, Rio de Janeiro, Brazil (2007)

    Google Scholar 

  20. 20.

    Ohlenforst, K.; Sawyer, S.; Dutton, A.; Backwell, B.; Fiestas, R.; Lee, J.; Qiao, L.; Zhao, F.; Balachandran, N. (2019): Global Wind Report. Global Wind Energy Council

  21. 21.

    Panofsky, H.A., Dutton, J.A.: Atmospheric Turbulence. Models and Methods for Engineering Applications, John Wiley and Sons, New York, N.Y. (1984)

    Google Scholar 

  22. 22.

    Pavinatto, E. F. (2005): Ferramenta para auxílio à análise de viabilidade técnica da conexão de parques eólicos à rede elétrica. Master Thesis., Programa de Engenharia Elétrica, COPPE/UFRJ, Rio de Janeiro, Brasil

  23. 23.

    Pichugina, Y.L., Banta, R.M., Brewer, W.A., Sandberg, S.P., Hardesty, R.M.: Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications. Am. Meteorol. Soc. 51, 327–349 (2012)

    Google Scholar 

  24. 24.

    Raiambal, K., Chellamuth, C. (2002). Modeling and SImulation of Grid Connected Wind Eletric Generating System, In: Proceedings of IEEE TENCON'02, pp.1847–1852

  25. 25.

    Simiu, E., Scanlan, R.U.: Wind Effects on Structures. An Introduction to Wind Engineering, John Wiley, New York, N.Y. (1978)

    Google Scholar 

  26. 26.

    Sorbjan, Z.: (1991): On Similarity in the atmospheric boundary layer. Bound. Layer Meteor. 43, 377–397 (1986)

    Article  Google Scholar 

  27. 27.

    Stull, R.B.: An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publishers, pp. 667

  28. 28.

    Taylor, P.K., Yelland, M.J.: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr. 31(2), 572–590 (2001)

    Article  Google Scholar 

  29. 29.

    Wyngaard, J.C.: On Surface Layer Turbulence. Workshop on Micrometeorology. (Ed. D.A. Haugen). Am. Meteoro. Soc. 101–148 (1973)

Download references

Acknowledgements

We would like to thank CENPES / PETROBRÁS who, through COPPETEC / UFRJ, provided all financial support in the development of the work and to Omega Energia for providing SODAR data for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luiz Felipe Rodrigues do Carmo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

do Carmo, L.F.R., de Almeida Palmeira, A.C.P., de Jesus Lauriano Antonio, C.F. et al. Comparison of wind profile estimation methods for calculating offshore wind potential for the Northeast region of Brazil. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00428-7

Download citation

Keywords

  • Wind profile
  • Wind energy
  • Wind potential
  • ERA5
  • SODAR