Skip to main content

Effect of collector roof cum chimney divergence and exhaust fan on solar chimney power plant performance

Abstract

The present research paper investigates the performance of divergent solar chimney power plant. A numerical model has been developed to predict the performance of divergent solar chimney power plant using ANSYS 15.0. Mesh refinement is performed in conventional solar chimney power plant and divergent solar chimney power plant. The numerical model has been validated with experimental data of Manzanares pilot plant. The simulated results are in good agreement with the experimental results. The k-ε (Realizable) turbulent model has been used for final simulation after thorough numerical testing. The collector efficiency and power output have been obtained in case of divergent solar chimney power plant deployed with divergence and exhaust fan at chimney outlet. The collector efficiency and power production capacity rose by 6.7% and 15% by 2 ° of divergence. Deployment of the chimney exhaust pump led to further 11.74% rise in net power output.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Abbreviations

g :

Acceleration due to gravity, m/s2

\({A}_{coll}\) :

Area of collector, m2

x :

Axial coordinate, m

\({v}_{x}\) :

Axial velocity, m/s

\(\varphi\) :

Chimney diverging angle

\({H}_{c}\) :

Chimney height, m

\({T}_{C-i}{ \& T}_{C-o}\) :

Collector inlet and outlet temperature, K

\(\theta\) :

Collector’s slope

\(\rho\) :

Density of air, kg/m3

i :

j, Directional components

\(DO\) :

Discrete ordinates

DSCPP :

Divergent solar chimney power plant

\(\mu\) :

Dynamic viscosity, Pa.s

\(\eta\) :

Efficiency

E :

Energy, J

\(\nabla\) :

Gradient operator

G r :

Grashof number

G :

Incident solar radiation, W/m2

m :

Mass flow rate, kg/s

PCM :

Phase change material

P :

Power output, W

Pr :

Prandtl number

\(\Delta p\) :

Pressure drop across turbine, Pa

p :

Pressure, Pa

QUICK :

Quadratic upstream interpolation for convective kinematics

r :

Radial coordinate (m)

\({v}_{r}\) Radial velocity:

M/s

Ra :

Rayleigh number

SIMPLE :

Semi-implicit method for pressure linked equations

SCCP:

Solar chimney power plant

\(c_{p}\) :

Specific heat capacity, J/kg.K

\(\nabla\) T :

Temperature gradient, K/m

\(\Delta T\) :

Temperature increment of air, K

\(\alpha\) :

Thermal diffusivity, m2/s

\(\beta\) :

Thermal expansion coefficient, 1/K

T :

Time coordinate, s

\(\varepsilon\) :

Turbulent dissipation rate, m2/s2

\(G_{b}\) :

Turbulent kinetic energy due to buoyancy, m2/s2

\(G_{k}\) :

Turbulent kinetic energy due to mean velocity gradient, m2/s2

\(\sigma_{k} , \sigma_{\varepsilon }\) :

Turbulent Prandtl number

\(\mu_{t}\) :

Turbulent viscosity, Pa s

V :

Volumetric flow rate, m3/s

References

  1. 1.

    Al-Kayiem, H.H., Aurybi, M.A., Gilani, S.I.U., Ismaeel, A.A., Mohammad, S.T.: Performance evaluation of hybrid solar chimney for uninterrupted power generation. Energy 166, 490–505 (2019)

    Article  Google Scholar 

  2. 2.

    Aurybi, M.A., Gilani, S.I., Al-Kayiem, H.H., Ismaeel, A.A.: Mathematical evaluation of solar chimney power plant collector, integrated with external heat source for non-interrupted power generation. Sustainable Energy Technol. Assess. 30, 59–67 (2018)

    Article  Google Scholar 

  3. 3.

    Elmagid, W.M.A., Keppler, I.: Axial flow turbine for solar chimney. Hungarian Agricultural Engineering 32, 29–37 (2017)

    Article  Google Scholar 

  4. 4.

    Fadaei, N., Kasaeian, A., Akbarzadeh, A., Hashemabadi, S.H.: Experimental investigation of solar chimney with phase change material (PCM). Renewable Energy 123, 26–35 (2018)

    Article  Google Scholar 

  5. 5.

    Fallah, S.H., Valipour, M.S.: Evaluation of solar chimney power plant performance: The effect of artificial roughness of collector. Sol. Energy 188, 175–184 (2019)

    Article  Google Scholar 

  6. 6.

    Fasel, H.F., Meng, F., Shams, E., Gross, A.: CFD analysis for solar chimney power plants. Sol. Energy 98, 12–22 (2013)

    Article  Google Scholar 

  7. 7.

    Fathi, N., McDaniel, P., Aleyasin, S.S., Robinson, M., Vorobieff, P., Rodriguez, S., de Oliveira, C.: Efficiency enhancement of solar chimney power plant by use of waste heat from nuclear power plant. J. Clean. Prod. 180, 407–416 (2018)

    Article  Google Scholar 

  8. 8.

    Gholamalizadeh, E., Kim, M.-H.: Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model. Renewable Energy 63, 498–506 (2014)

    Article  Google Scholar 

  9. 9.

    Gholamalizadeh, E., Kim, M.-H.: CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof. Energy 107, 661–667 (2016)

    Article  Google Scholar 

  10. 10.

    Haaf, W.: Solar Chimneys. International Journal of Solar Energy 2(2), 141–161 (1984)

    Article  Google Scholar 

  11. 11.

    Haaf, W., Friedrich, K., MAYR, G., & Schlaich, J. : Part I: Principle and Construction of the Pilot Plant in Manzanares. International Journal of Solar Energy 2(1), 3–20 (1983)

    Article  Google Scholar 

  12. 12.

    Hassan, A., Ali, M., Waqas, A.: Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle. Energy 142, 411–425 (2018)

    Article  Google Scholar 

  13. 13.

    Hu, S., Leung, D.Y.C., Chan, J.C.Y.: Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy 120, 1–11 (2017)

    Article  Google Scholar 

  14. 14.

    Huang, M., Chen, L., He, Y., Cao, J., Tao, W.: A two-dimensional simulation method of the solar chimney power plant with a new radiation model for the collector. Int. Commun. Heat Mass Transfer 85, 100–106 (2017)

    Article  Google Scholar 

  15. 15.

    Hussain, F.M., Al-Sulaiman, F.A.: Performance analysis of a solar chimney power plant design aided with reflectors. Energy Convers. Manage. 177, 30–42 (2018)

    Article  Google Scholar 

  16. 16.

    Kasaeian, A., Mahmoudi, A.R., Astaraei, F.R., Hejab, A.: 3D simulation of solar chimney power plant considering turbine blades. Energy Convers. Manage. 147, 55–65 (2017)

    Article  Google Scholar 

  17. 17.

    Kiwan, S., Al-Nimr, M., Abdel Salam, Q.I.: Solar chimney power-water distillation plant (SCPWDP). Desalination 445, 105–114 (2018)

    Article  Google Scholar 

  18. 18.

    Nasraoui, H., Driss, Z., Kchaou, H.: Novel collector design for enhancing the performance of solar chimney power plant. Renewable Energy 145, 1658–1671 (2019)

    Article  Google Scholar 

  19. 19.

    Rabehi, R., Chaker, A., Ming, T., Gong, T.: Numerical simulation of solar chimney power plant adopting the fan model. Renewable Energy 126, 1093–1101 (2018)

    Article  Google Scholar 

  20. 20.

    Rahbar, K., & Riasi, A. (2019). Performance enhancement and optimization of solar chimney power plant integrated with transparent photovoltaic cells and desalination method. Sustainable Cities and Society, 46, 101441.

  21. 21.

    Xu, Y., Zhou, X.: Performance of divergent-chimney solar power plants. Sol. Energy 170, 379–387 (2018)

    Article  Google Scholar 

  22. 22.

    Xu, Y., Zhou, X.: Performance of a modified solar chimney power plant for power generation and vegetation. Energy 171, 502–509 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Author is thankful to NIT Raipur authorities for providing library and computational facilities need for this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar Dewangan.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dewangan, S.K. Effect of collector roof cum chimney divergence and exhaust fan on solar chimney power plant performance. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00426-9

Download citation

Keywords

  • Divergent solar chimney power plant (DSCPP)
  • Solar chimney performance
  • Collector efficiency
  • Exhaust pressure jump effect