Skip to main content

Economic evaluation of the life cycle of a wind farm and improving the levelized cost of energy in region Champagne-Ardenne, France

Abstract

This study focused on an industrial area, i.e., Champagne-Ardenne, France, containing 25 wind turbines with a lifespan of 25 years. We assessed the economic situation from the beginning of the operation of this plant to the end of its lifetime using the levelized cost of energy (LCOE) indicator, which assesses the average cost of energy production during a project. We also considered the environmental cost associated with the wind sector. The objective of this study was to explore the effects of all parameters, including the calculation of the LCOE indicator, to provide decision-makers and local authorities with optimization solutions. We also developed an optimization algorithm to provide the best combination of all LCOE parameters for producing sustainable energy at the lowest cost.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hoogwijk, M., De Vries, B., Turkenburg, W.: Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econom. 26(5), 889–919 (2004)

    Article  Google Scholar 

  2. 2.

    Agency, I. E.: «Projected costs of generating electricity» (2015)

  3. 3.

    Gifford, J. S., Grace et, R. C., Rickerson, W. H.: «Renewable energy cost modeling : A toolkit for establishing cost-based incentives in the united states; march 2010–march 2011», cahier de recherche, National Renewable Energy Laboratory (NREL), Golden, CO (2011)

  4. 4.

    Short, W., Packey et D. J., Holt, T.: «A manual for the economic evaluation of energy efficiency and renewable energy technologies», cahier de recherche, National Renewable Energy Lab., Golden, CO (United States) (1995)

  5. 5.

    Adaramola, M., Paul, S., Oyedepo, S.: Assessment of electricity generation and energy cost of wind energy conversion systems in north-central nigeria. Energy Conv. Manag. 52(12), 3363–3368 (2011)

    Article  Google Scholar 

  6. 6.

    Miller, L., Carriveau, R., Harper, S., Singh, S.: Evaluating the link between lcoe and ppa elements and structure for wind energy. Energy Strategy Rev. 16, 33–42 (2017)

    Article  Google Scholar 

  7. 7.

    Tazi, N., Châtelet, E., Meziane et R., Bouzidi Y.: Reliability optimization of wind farms considering constraints and regulations, dans Renewable Energy Research and Applications (ICRERA), 2016 IEEE International Conference on, IEEE, pp. 130–136 (2016)

  8. 8.

    Staffell, I., Green, R.: How does wind farmperformance decline with age? Renew. Energy 66, 775–786 (2014)

    Article  Google Scholar 

  9. 9.

    De Roo, G., Parsons, J.E.: A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling. Energy Econom. 33(5), 826–839 (2011)

    Article  Google Scholar 

  10. 10.

    Lucheroni, C., Mari, C.: Co2 volatility impact on energy portfolio choice: a fully stochastic lcoe theory analysis. Appl. Energy 190, 278–290 (2017)

    Article  Google Scholar 

  11. 11.

    Riesz, J., Sotiriadis, C., Vithayasrichareon, P., Gilmore, J.: Quantifying key uncertainties in the costs of nuclear power. Int. J. Energy Res. 41(3), 389–409 (2017)

    Article  Google Scholar 

  12. 12.

    Richards, J., Sabharwall, P., Memmott, M.: Economic comparison of current electricity generating technologies and advanced nuclear options. Electr. J. 30(10), 73–79 (2017)

    Google Scholar 

  13. 13.

    Mondol, J.D., Carr, C.: Techno-economic assessments of advanced combined cycle gas turbine (ccgt) technology for the new electricity market in the united arab emirates. Sustain. Energy Technol. Assess. 19, 160–172 (2017)

    Google Scholar 

  14. 14.

    Rubin, E.S., Zhai, H.: The cost of carbon capture and storage for natural gas combined cycle power plants. Environ. Sci. Technol. 46(6), 3076–3084 (2012)

    Article  Google Scholar 

  15. 15.

    Orbaiz, P.J., Brear, M.J.: A technical and financial analysis of two recuperated, reciprocating engine driven power plants. Part 2: Financial analysis. Energy Convers. Manag. 80, 609–615 (2014)

    Article  Google Scholar 

  16. 16.

    O’shea, R., Wall, D.M., Kilgallon, I., Browne, J.D., Murphy, J.D.: Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region. Appl. Energy 188, 237–256 (2017)

    Article  Google Scholar 

  17. 17.

    Pihl, E., Heyne, S., Thunman, H., Johnsson, F.: Highly efficient electricity generation from biomass by integration and hybridization with combined cycle gas turbine (ccgt) plants for natural gas. Energy 35(10), 4042–4052 (2010)

    Article  Google Scholar 

  18. 18.

    Geissmann, T.: A probabilistic approach to the computation of the levelized cost of electricity. Energy 124, 372–381 (2017)

    Article  Google Scholar 

  19. 19.

    Merkel, T.C., Zhou, M., Baker, R.W.: Carbon dioxide capture with membranes at an igcc power plant. J. Membrane Sci. 389, 441–450 (2012)

    Article  Google Scholar 

  20. 20.

    Pettinau, A., Ferrara, F., Tola, V., Cau, G.: Techno-economic comparison between different technologies for co2-free power generation from coal. Appl. Energy 193, 426–439 (2017)

    Article  Google Scholar 

  21. 21.

    Zhao, C., Zhang, W., Wang, Y., Liu, Q., Guo, J., Xiong, M., Yuan, J.: The economics of coal power generation in China. Energy Policy 105, 1–9 (2017)

    Article  Google Scholar 

  22. 22.

    Breyer, C., Gerlach, A.: Global overview on grid-parity. Progress Photovoltaics Res. Appl. 21(1), 121–136 (2013)

    Article  Google Scholar 

  23. 23.

    Montes, M., Abánades, A., Martinez-Val, J., Valdés, M.: Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy 83(12), 2165–2176 (2009)

    Article  Google Scholar 

  24. 24.

    Limmanee, A., Songtrai, S., Udomdachanut, N., Kaewniyompanit, S., Sato, Y., Nakaishi, M., Kittisontirak, S., Sriprapha, K., Sakamoto, Y.: Degradation analysis of photovoltaic modules under tropical climatic conditions and its impacts on lcoe. Renew. Energy 102, 199–204 (2017)

    Article  Google Scholar 

  25. 25.

    Ma, Y., Zhang, X., Liu, M., Yan, J., Liu, J.: Proposal and assessment of a novel supercritical co2 brayton cycle integrated with libr absorption chiller for concentrated solar power applications. Energy (2018). https://doi.org/10.1016/j.energy.2018.01.155. (ISSN 0360-5442)

    Article  Google Scholar 

  26. 26.

    Hernández-Moro, J., Martínez-Duart, J.: Analytical model for solar pv and csp electricity costs : present lcoe values and their future evolution. Renew. Sustain. Energy Rev. 20, 119–132 (2013)

    Article  Google Scholar 

  27. 27.

    Bortolini, M., Gamberi, M., GrazianI, A.: Technical and economic design of photovoltaic and battery energy storage system. Energy Convers. Manag. 86, 81–92 (2014)

    Article  Google Scholar 

  28. 28.

    Guo, P., Zhai, Y., Xu, X., Li, J.: Assessment of levelized cost of electricity for a 10-mw solar chimney power plant in yinchuan China. Energy Convers. Manag. 152, 176–185 (2017)

    Article  Google Scholar 

  29. 29.

    Wagner, S.J., Rubin, E.S.: Economic implications of thermal energy storage for concentrated solar thermal power. Renew. Energy 61, 81–95 (2014)

    Article  Google Scholar 

  30. 30.

    Barbosa, L.D.S.N.S., Bogdanov, D., Vainikka, P., Breyer, C.: Hydro, wind and solar power as a base for a 100% renewable energy supply for south and central america. PloS one 12(3), e0173820 (2017)

    Article  Google Scholar 

  31. 31.

    Dowling, A.W., Zheng, T., Zavala, V.M.: Economic assessment of concentrated solar power technologies : A review. Renew. Sustain. Energy Rev. 72, 1019–1032 (2017)

    Article  Google Scholar 

  32. 32.

    Dufo-López, R., Bernal-Agustín, J.L., Yusta-Loyo, J.M., Domínguez-Navarro, J.A., Ramírez-Rosado, I.J., Lujano, J., Aso, I.: Multi-objective optimization minimizing cost and life cycle emissions of stand-alone pv–wind–diesel systems with batteries storage. Appl. Energy 88(11), 4033–4041 (2011)

    Article  Google Scholar 

  33. 33.

    Koutroulis, E., Blaabjerg, F.: Design optimization of transformerless grid-connected pv inverters including reliability. IEEE Trans. Power Electron. 28(1), 325–335 (2013)

    Article  Google Scholar 

  34. 34.

    Lai, C.S., Mcculloch, M.D.: Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 190, 191–203 (2017)

    Article  Google Scholar 

  35. 35.

    Sharma, C., Sharma, A.K., Mullick, S.C., Kandpal, T.C.: Solar thermal power generation in india: effect of potential incentives on unit cost of electricity. Int. J. Sustain. Energy 36(8), 722–737 (2017)

    Article  Google Scholar 

  36. 36.

    Zhang, H., Baeyens, J., Caceres, G., Degreve, J., Lv, Y.: Thermal energy storage : recent developments and practical aspects. Progress Energy Combustion Sci. 53, 1–40 (2016)

    Article  Google Scholar 

  37. 37.

    Cai, M., Wu, Y., Chen, H., Yang, X., Qiang, Y., Han, L.: Cost-performance analysis of perovskite solar modules, Advanced Science, 4(1) (2017)

  38. 38.

    Cucchiella, F., D’Adamo, I., Gastaldi, M.: Economic analysis of a photovoltaic system: a resource for residential households. Energies 10(6), 814 (2017)

    Article  Google Scholar 

  39. 39.

    Krebs, F.C., Tromholt, T., Jørgensen, M.: Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2(6), 873–886 (2010)

    Article  Google Scholar 

  40. 40.

    Mulligan, C.J., Bilen, C., Zhou, X., Belcher, W.J., Dastoor, P.C.: Levelised cost of electricity for organic photovoltaics. Solar Energy Mater. Solar Cells 133, 26–31 (2015)

    Article  Google Scholar 

  41. 41.

    Song, Z., Mcelvany, C.L., Phillips, A.B., Celik, I., Krantz, P.W., Watthage, S.C., Liyanage, G.K., Apul, D., Heben, M.J.: A technoeconomic analysis of perovskite solar modulemanufacturing with low-cost materials and techniques. Energy Environ. Sci. 10(6), 1297–1305 (2017)

    Article  Google Scholar 

  42. 42.

    Watts, D., Valdés, M.F., Jara, D., Watson, A.: Potential residential pv development in chile: the effect of net metering and net billing schemes for grid-connected pv systems. Renew. Sustain. Energy Rev. 41, 1037–1051 (2015)

    Article  Google Scholar 

  43. 43.

    Bruck, M., Sandborn, P., Goudarzi, N.: A levelized cost of energy (lcoe) model for wind farms that include power purchase agreements (ppas). Renew. Energy 122, 131–139 (2018)

    Article  Google Scholar 

  44. 44.

    Hou, P., Enevoldsen, P., Hu, W., Chen, C., Chen, Z.: Offshore wind farm repowering optimization. Appl. Energy 208, 834–844 (2017)

    Article  Google Scholar 

  45. 45.

    Jesus, F., Guanche, R., Losada, Í.J.: The impact of wind resource spatial variability on floating offshore wind farms finance. Wind Energy 20(7), 1131–1143 (2017)

    Google Scholar 

  46. 46.

    Poulsen, T., Hasager, C.B.: How expensive is expensive enough? Opportunities for cost reductions in offshore wind energy logistics. Energies 9(6), 437 (2016)

    Article  Google Scholar 

  47. 47.

    Poulsen, T., Hasager, C.B., Jensen, C.M.: The role of logistics in practical levelized cost of energy reduction implementation and government sponsored cost reduction studies: day and night in offshore wind operations and maintenance logistics. Energies 10(4), 464 (2017)

    Article  Google Scholar 

  48. 48.

    Abdelhady, S., Borello, D., Shaban, A.: Assessment of levelized cost of electricity of offshore wind energy in egypt. Wind Eng. 41(3), 160–173 (2017)

    Article  Google Scholar 

  49. 49.

    Astariz, S., Perez-Collazo, C., Abanades, J., Iglesias, G.: Co-located wave-wind farms : economic assessment as a function of layout. Renew. Energy 83, 837–849 (2015)

    Article  Google Scholar 

  50. 50.

    Bishop, J.D., Amaratunga, G.A.: Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for barbados. Energy Convers. Manag. 49(6), 1652–1661 (2008)

    Article  Google Scholar 

  51. 51.

    Chiang, A.C., Keoleian, G.A., Moore, M.R., Kelly, J.C.: Investment cost and view damage cost of siting an offshore wind farm: a spatial analysis of lake michigan. Renew. Energy 96, 966–976 (2016)

    Article  Google Scholar 

  52. 52.

    Gökçek, M., Genç, M.S.: Evaluation of electricity generation and energy cost of wind energy conversion systems (wecss) in central Turkey. Appl. Energy 86(12), 2731–2739 (2009)

    Article  Google Scholar 

  53. 53.

    Mattar, C., Guzmán-Ibarra, M.C.: A techno-economic assessment of offshore wind energy in chile. Energy 133, 191–205 (2017)

    Article  Google Scholar 

  54. 54.

    Myhr, A., Bjerkseter, C., Ågotnes, A., Nygaard, T.A.: Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renew. Energy 66, 714–728 (2014)

    Article  Google Scholar 

  55. 55.

    Roth, I.F., Ambs, L.L.: Incorporating externalities into a full cost approach to electric power generation life-cycle costing. Energy 29(12–15), 2125–2144 (2004)

    Article  Google Scholar 

  56. 56.

    Succar, S., Denkenberger, D.C., Williams, R.H.: Optimization of specific rating for wind turbine arrays coupled to compressed air energy storage. Appl. Energy 96, 222–234 (2012)

    Article  Google Scholar 

  57. 57.

    Hdidouan, D., Staffell, I.: The impact of climate change on the levelised cost of wind energy. Renew. Energy 101, 575–592 (2017)

    Article  Google Scholar 

  58. 58.

    Rubert, T., Mcmillan D., Niewczas P. (2017) A decision support tool to assist with lifetime extension of wind turbines, Renew. Energy

  59. 59.

    Moomaw, W., Burgherr, P., Heath, G., Lenzen, M., Nyboer, J., Verbruggen, A.: IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  60. 60.

    Garrett, P., Ronde, K. (2011) Life cycle assessment of electricity production from a v90–2.0 mw gridstreamer wind plant

  61. 61.

    DES ENERGIES RENOUVELABLES, S. Panorame de l’Electricite Renouvelable en 2016 (Renewable Electricity panorama in 2016), Renewable energy syndicate, Paris (2016)

  62. 62.

    WINDEUROPE. (2017b) Wind energy’s frequently asked questions, URL http://www.ewea.org/wind-energy-basics/faq.

  63. 63.

    EDF. 2014 (accessed April 15, 2017), EDF contract in France, (available upon request). URL https://www.edf-oa.fr/sites/default/files/uploads/contributeur/documents/ cp_e14_v0.3_du_06_04_2016.pdf

  64. 64.

    EUROPA (accessed April 15, 2017), electricity prices by energy source in France. http://ec.europa.eu/eurostat/statistics-explained/images/e/ee/Energy_prices_YB2016-FR.xlsx (2016)

  65. 65.

    Fee, F. E. E. (accessed April 15, 2017), Costs of onshore wind energy in France, translated from French. http://fee.asso.fr/pub/ observatoire-couts-de-leolien-terrestre-france/ (2016)

  66. 66.

    Obi, M., Jensen, S., Ferris, J.B., Bass, R.B.: Calculation of levelized costs of electricity for various electrical energy storage systems. Renew. Sustain. Energy Rev. 67, 908–920 (2017)

    Article  Google Scholar 

  67. 67.

    Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T.A., Ekemb, G.: Wind turbine conditionmonitoring: State-of-the-art review, new trends, and future challenges. Energies 7(4), 2595–2630 (2014)

    Article  Google Scholar 

  68. 68.

    Wiggelinkhuizen, E., Verbruggen, T., Braam, H., Rademakers, L., Xiang, J., Watson, S.: Assessment of condition monitoring techniques for offshore wind farms. J. Solar Energy Eng. 130(3), 031004 (2008)

    Article  Google Scholar 

  69. 69.

    Lantz E.: Operations Expenditures : Historical Trends and Continuing Challenges, National Renew. Energy Lab. (2013)

  70. 70.

    Tegen, S., Hand, M., Maples, B., Lantz, E., Schwabe P., Smith A. (2012) 2010 cost of wind energy review, cahier de recherche, National Renewable Energy Laboratory (NREL), Golden, CO.

  71. 71.

    FRENCH MINISTER OF ENVIRONMENT, E. et SEA. (accessed April 15, 2017), LOI num.2015- 992 du 17 aout 2015 relative à la transition energetique pour la croissance verte. https: //www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000031044385&categorieLien=id. (2015)

  72. 72.

    Jafar, A.H., Al-Amin, A.Q., Siwar, C.: Environmental impact of alternative fuel mix in electricity generation in malaysia. Renew. Energy 33(10), 2229–2235 (2008)

    Article  Google Scholar 

  73. 73.

    Saidur, R., Rahim, N., Islam, M., Solangi, K.: Environmental impact of wind energy. Renew. Sustain. Energy Rev. 15(5), 2423–2430 (2011)

    Article  Google Scholar 

  74. 74.

    DE Cote D’OR, P Translated fromfrench (enquete publique relative à la demande d’autorisation d’exploiter, au titre des installations classees pour la protection de l’envrionnement, unNparc eolien comprenant 8 aerogenerateurs et trois postes de livraison sur le territoire des communes de beze) - rapport du 20/12/2013», cahier de recherche, Prefecture de Cote-d’Or (2013)

  75. 75.

    Ardente, F., BeccalI, M., Cellura, M., Brano, V.L.: Energy performances and life cycle assessment of an italian wind farm. Renew. Sustain. Energy Rev. 12(1), 200–217 (2008)

    Article  Google Scholar 

  76. 76.

    Thomson, R. C., G. P. Harrison (2015) Life cycle costs and carbon emissions of offshore wind power

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdelouahab Zaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaoui, A., Meziane, R., Chatelet, E. et al. Economic evaluation of the life cycle of a wind farm and improving the levelized cost of energy in region Champagne-Ardenne, France. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00425-w

Download citation

Keywords

  • Wind turbines
  • Lifespan
  • LCOE (levelized cost of energy)
  • Optimization
  • Algorithm