Skip to main content

Advertisement

Log in

Study on the effects of winglets: wind turbine blades having circular arc blade section profile

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

Performance enhancement of horizontal axis wind turbine with circular arc blade section has been investigated both experimentally and computationally using upstream and downstream winglet configurations. A computational study is performed for a three-blade rotor of 0.5-m-diameter in ANSYS Fluent to identify the optimum values for cant angle and twist angle. Findings from the numerical analysis are then utilized as inputs for the experimental study. The height of the winglet is selected as 6% of the rotor radius while cant angle and twist angle are 55° and 0°, respectively. Power and thrust coefficient are measured for both the upstream and downstream winglet orientations at different pitch angles (\(\varphi\)) and tip speed ratios (λ). Results show that upstream winglet provides 9.79% extra power in comparison with reference model at design tip speed ratio (TSR = 5) and zero pitch angle. Improved performance is obtained with downstream winglet achieving almost 15% additional power. Conversely, for all the pitch angles, power decreases as λ0.1 beyond the design tip speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

u, v, w :

Components of the velocity in the x, y, and z directions, respectively

p :

Pressure

S Mx, S My, S Mz :

Body forces per unit of mass in the x, y, and z directions, respectively

P :

Power generated (Watts)

T :

Torque (N m)

n :

Number of blades of the wind turbine

P :

Local static pressure (Pa)

P :

Free-stream static pressure (Pa)

V :

Wind speed (m/s)

Ρ :

Free-stream density (Kg/m3)

r :

Radial distance from the hub center to the blade section (m)

2D:

Two dimensional

3D:

Three dimensional

HAWT:

Horizontal axis wind turbine

BEMT:

Blade element momentum theory

CFD:

Computational fluid dynamics

\(\tau_{ij}\) :

Normal land shear stresses that affect the 3D fluid particles

ω :

Angular velocity in (rad/s)

λ :

Tip speed ratio

\(\varphi\) :

Pitch angle

References

  1. GWEC Global Wind Report 2019. https://gwec.net/global-wind-report-2019/ (2020)

  2. Hazmoune, M., Lazaroiu, G., Ciupageanu, D., Debbache, M.: Comparative study of airfoil profile effect on the aerodynamic performance of small scale wind turbines. In: 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021. https://doi.org/10.1109/atee52255.2021.9425211

  3. Golding, E.W.: The Generation of Electricity by Wind Power. Halsted Press, Canberra (1976)

    Google Scholar 

  4. Mandal A.C., Islam Q.: Aerodynamics and Design of Wind Turbines (2002)

    Google Scholar 

  5. SoN, W.: Performance and Optimum Design Analysis/Computation for Propeller Type Wind Turbines. Oregon State University, Corvallis (1976)

    Google Scholar 

  6. Bruining, A., Timmer, W.A.: Airfoil characteristics of rotating wind turbine blades. J. Wind Eng. Ind. Aerodyn. 39(1–3), 35–39 (1992). https://doi.org/10.1016/0167-6105(92)90530-N

    Article  Google Scholar 

  7. Begum M.H.A.: An Experimental Investigation and the Design Analysis of a HA WT with Circular Arc Blade Section (2002)

  8. Shen, W.Z., Mikkelsen, R., Sørensen, J.N., Bak, C.: Tip loss corrections for wind turbine computations. Wind Energy 8(4), 457–475 (2005). https://doi.org/10.1002/we.153

    Article  Google Scholar 

  9. Alsultan A.A.: Computational and Experimental Study on Innovative Horizontal-Axis Wind Turbine Blade Designs, pp. 1–107 (2015)

  10. Maughmer M.D.: The design of winglets for high-performance sailplanes. In: 19th AIAA Applied Aerodynamics Conference, 40(6), (2001) https://doi.org/10.2514/2.7220

  11. Johansen, J., Sørensen, N.N.: Aerodynamic investigation of Winglets on wind turbine blades using CFD. Risø Natl. Lab. 1543, 1–17 (2006)

    Google Scholar 

  12. Wang, J.W., Jia, R.B., Wu, K.Q.: Numerical simulation on effect of pressure distribution of wind turbine blade with a tip vane. J. Therm. Sci. 16(3), 203–207 (2007). https://doi.org/10.1007/s11630-007-0203-2

    Article  Google Scholar 

  13. Gertz, D., Johnson, D., Swytink-Binnema, N.: An evaluation testbed for wind turbine blade tip designs—Winglet results. Wind Eng. 36(4), 389–410 (2012). https://doi.org/10.1260/0309-524X.36.4.389

    Article  Google Scholar 

  14. Saravanan, P., Parammasivam, K.M., Rajan, S.S.: Experimental investigation on small horizontal axis wind turbine rotor using winglets. J. Appl. Sci. Eng. 16(2), 159–164 (2013). https://doi.org/10.6180/jase.2013.16.2.07

    Article  Google Scholar 

  15. Elfarra, M.A., Uzol, N.S., Akmandor, I.S.: Investigations on blade tip tilting for hawt rotor blades using CFD. Int. J. Green Energy 12(2), 125–138 (2015). https://doi.org/10.1080/15435075.2014.889007

    Article  Google Scholar 

  16. Ostovan, Y., Uzol, O.: Experimental study on the effects of winglets on the performance of two interacting horizontal axis model wind turbines. J. Phys. Conf. Ser. (2016). https://doi.org/10.1088/1742-6596/753/2/022015

    Article  Google Scholar 

  17. Ostovan, Y., Akpolat, M.T., Uzol, O.: Experimental investigation of the effects of winglets on the tip vortex behavior of a model horizontal axis wind turbine using particle image velocimetry. J. Sol. Energy Eng. Trans. ASME (2019). https://doi.org/10.1115/1.4041154

    Article  Google Scholar 

  18. Zahle, F., Sørensen, N.N., McWilliam, M.K., Barlas, A.: Computational fluid dynamics-based surrogate optimization of a wind turbine blade tip extension for maximising energy production. J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1037/4/042013

    Article  Google Scholar 

  19. Peñuela H.P., Rivera W.G.: Aerodynamic evaluation with cfd of tip devices in blade for wind turbine. January 2019, 2018

  20. Zhu, B., Sun, X., Wang, Y., Huang, D.: Performance characteristics of a horizontal axis turbine with fusion winglet. Energy 120, 431–440 (2017). https://doi.org/10.1016/j.energy.2016.11.094

    Article  Google Scholar 

  21. Khalafallah, M.G., Ahmed, A.M., Emam, M.K.: The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine. Adv. Mech. Eng. 11(9), 1–10 (2019). https://doi.org/10.1177/1687814019878312

    Article  Google Scholar 

  22. Khaled, M., Ibrahim, M.M., Abdel Hamed, H.E., AbdelGwad, A.F.: Investigation of a small horizontal-axis wind turbine performance with and without winglet. Energy 187, 115921 (2019). https://doi.org/10.1016/j.energy.2019.115921

    Article  Google Scholar 

  23. Zhang, T., Elsakka, M., Huang, W., Wang, Z., Ingham, D.B., Ma, L., Pourkashanian, M.: Winglet design for vertical axis wind turbines based on a design of experiment and CFD approach. Energy Convers. Manag. 195, 712–726 (2019). https://doi.org/10.1016/j.enconman.2019.05.055

    Article  Google Scholar 

  24. Mourad, M.G., Shahin, I., Ayad, S.S., Abdellatif, O.E., Mekhail, T.A.: Effect of winglet geometry on horizontal axis wind turbine performance. Eng. Rep. 2(1), 1–19 (2020). https://doi.org/10.1002/eng2.12101

    Article  Google Scholar 

  25. Mühle, F., Bartl, J., Hansen, T., Adaramola, M.S., Sætran, L.: An experimental study on the effects of winglets on the tip vortex interaction in the near wake of a model wind turbine. Wind Energy 23(5), 1286–1300 (2020). https://doi.org/10.1002/we.2486

    Article  Google Scholar 

  26. Khaled, M., Ibrahim, M.M., Abdel Hamed, H.E., AbdelGwad, A.F.: Aerodynamic design and blade angle analysis of a small horizontal-axis wind turbine. Am. J. Mod. Energy 3(2), 23 (2017). https://doi.org/10.11648/j.ajme.20170302.12

    Article  Google Scholar 

  27. Farhan, A., Hassanpour, A., Burns, A., Motlagh, Y.G.: Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance. Renew. Energy 131, 1255–1273 (2019). https://doi.org/10.1016/j.renene.2018.08.017

    Article  Google Scholar 

  28. Anderson, J.D.: Computational Fluid Dynamics—The basics with applications.pdf (1995)

  29. Wheeler, A., Ganji, A.: Introduction to Engineering Experimentation (2004)

    Google Scholar 

Download references

Acknowledgements

The author would like to show his profound gratitude to his supervisor, Professor Quamrul Islam, for his constant supervision and essential instructions to the research work all through the time. The author is also thankful to Shoyon Panday for his support and guidance.

Funding

There has been no external funding or financial support for conducting the experimental investigation.

Author information

Authors and Affiliations

Authors

Contributions

NAK and MQI contributed to the wind turbine model design, winglet design, and experimental part of the research. NAK contributed to the CFD part of the study. NAK and MQI wrote the article.

Corresponding author

Correspondence to Nafiz Ahmed Khan M.Sc. .

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declare that there is no conflict of interest.

Data availability statement

All the data of the experimental setup (blades geometry, winglet configurations, test bench, wind tunnel dimensions) as well as the experimental and computational results will be available upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The level of uncertainty can be obtained using the following equation

$$\delta R = \sqrt {\left( {\delta x_{1} \frac{\partial R}{{\partial x_{1} }}} \right)^{2} + \left( {\delta x_{2} \frac{\partial R}{{\partial x_{2} }}} \right)^{2} + \cdots + \left( {x_{n} \frac{\partial R}{{\partial x_{n} }}} \right)^{2} }$$
(12)

Coefficient of power equation in simplified form:

$$C_{{\text{P}}} = \frac{{(F_{1} - F_{2} )R * \frac{2\pi r}{{60}}}}{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}\rho \pi r^{2} V_{\infty }^{3} }}$$
(13)

The uncertainty equation becomes:

$$\delta_{{C_{{\text{p}}} }} = \sqrt {\left( {\delta F_{1} \frac{{\partial C_{{\text{P}}} }}{{\partial F_{1} }}} \right)^{2} + \left( {\delta F_{2} \frac{{\partial C_{{\text{P}}} }}{{\partial F_{2} }}} \right)^{2} + \left( {\delta R\frac{{\partial C_{{\text{P}}} }}{\partial R}} \right)^{2} + \left( {\delta N\frac{{\partial C_{{\text{P}}} }}{\partial N}} \right)^{2} + \left( {\delta \rho \frac{{\partial C_{{\text{P}}} }}{\partial \rho }} \right)^{2} + \left( {\delta r\frac{{\partial C_{{\text{P}}} }}{\partial r}} \right)^{2} + \left( {\delta V_{\infty } \frac{{\partial C_{{\text{P}}} }}{{\partial V_{\infty } }}} \right)^{2} }$$
(14)
$$\delta_{{C_{{\text{p}}} }} = \pm 0.0129$$
$${\text{Experimental}}\,{\text{Uncertainty}}\,{\text{at}}\,{\text{design}}\,{\text{TSR}} = \, 0.329 \pm 0.0129$$
(15)
$$\begin{aligned} {\text{Percentage}}\,{\text{of}}\,{\text{error}} & = \frac{0.0129}{{0.329}}*100\% \\ & = 3.92\% \\ \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N.A., Islam, M.Q. Study on the effects of winglets: wind turbine blades having circular arc blade section profile. Int J Energy Environ Eng 12, 837–853 (2021). https://doi.org/10.1007/s40095-021-00414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00414-z

Keywords

Navigation