Natural pozzolan super-absorbent polymer: synthesis, characterization, and its application on plant growing under drought condition

Abstract

In this work, a novel natural pozzolan-incorporated super-absorbent polymer composites (SAPCs), a potential soil-additive to increase water holding capacity and water use efficiency of soil, was synthesized and characterized. Consequently, barley plants have been grown on the produced SAPCs under (1) well-watered and (2) water-deficient conditions. Results showed that SAPCs could reach the highest theoretical equilibrium swelling capacities of 20,000% and 3260% (wt/wt) in pure water and saltwater. Natural pozzolan (NP) incorporation with super-absorbent polymer improves water absorption capacity and thermal stability. Under the water-deficit condition, the amendment of soil with %1 SAPCs and %1 NP suppressed the reduction of relative water content as 4–8%, while it was recorded as 14% in control plants. These results confirmed that SAPC-amended soil could hold significant amounts of water and release it to plant roots gradually as needed. In conclusion, poly(AA-co-AM)/NP SAPCs can be used as a soil additive to reduce water loss, especially in arid/semi-arid regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Reddy, A.R., Chaitanya, K.V., Vivekanandan, M.: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161, 1189–1202 (2004). https://doi.org/10.1016/j.jplph.2004.01.013

    Article  Google Scholar 

  2. 2.

    Dai, A.: Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Chang. 2, 45–65 (2011). https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  3. 3.

    Suarez, D.L.: Soil salinization and management options for sustainable crop production. In: Pessarakli, M. (ed.) Handbook of Plant Crop Stress, pp. 41–54. CRC Press, USA (2010)

    Chapter  Google Scholar 

  4. 4.

    Tanji, K.K., Wallender, W.W.: Nature and extent of agricultural salinity and sodicity. In: Agricultural Salinity Assessment and Management, pp. 1–25. American Society of Civil Engineers, Reston (2011)

  5. 5.

    Shahbaz, M., Ashraf, M.: Improving salinity tolerance in cereals. CRC. Crit. Rev. Plant Sci. 32, 237–249 (2013). https://doi.org/10.1080/07352689.2013.758544

    Article  Google Scholar 

  6. 6.

    Simair, A.A., Simair, S.P.: Status and recent progress in determining the genetic diversity and phylogeny of cotton crops. In: Wang, H., Memon, H. (eds.) Cotton Science and Processing Technology. Textile Science and Clothing Technology, pp. 15–37. Springer, Singapore (2020)

  7. 7.

    Jamil, A., Riaz, S., Ashraf, M., Foolad, M.R.: Gene expression profiling of plants under salt stress. CRC. Crit. Rev. Plant Sci. 30, 435–458 (2011). https://doi.org/10.1080/07352689.2011.605739

    Article  Google Scholar 

  8. 8.

    Laftah, W.A., Hashim, S., Ibrahim, A.N.: Polymer hydrogels: a review. Polym. Plast. Technol. Eng. 50, 1475–1486 (2011). https://doi.org/10.1080/03602559.2011.593082

    Article  Google Scholar 

  9. 9.

    Kabiri, K., Omidian, H., Zohuriaan-Mehr, M.J., Doroudiani, S.: Superabsorbent hydrogel composites and nanocomposites: a review. Polym. Compos. 32, 277–289 (2011). https://doi.org/10.1002/pc.21046

    Article  Google Scholar 

  10. 10.

    Zohuriaan-Mehr, M.J., Kabiri, K.: Superabsorbent polymer materials: a review. Iran. Polym. J. 17, 451–477 (2008)

    Google Scholar 

  11. 11.

    Hasija, V., Sharma, K., Kumar, V., Sharma, S., Sharma, V.: Green synthesis of agar/Gum Arabic based superabsorbent as an alternative for irrigation in agriculture. Vacuum 157, 458–464 (2018). https://doi.org/10.1016/j.vacuum.2018.09.012

    Article  Google Scholar 

  12. 12.

    Li, X., Li, Q., Su, Y., Yue, Q., Gao, B., Su, Y.: A novel wheat straw cellulose-based semi-IPNs superabsorbent with integration of water-retaining and controlled-release fertilizers. J. Taiwan Inst. Chem. Eng. 55, 170–179 (2015). https://doi.org/10.1016/j.jtice.2015.04.022

    Article  Google Scholar 

  13. 13.

    Gao, J., Liu, J., Peng, H., Wang, Y., Cheng, S., Lei, Z.: Preparation of a low-cost and eco-friendly superabsorbent composite based on wheat bran and laterite for potential application in Chinese herbal medicine growth. R. Soc. Open Sci. 5, 1–15 (2018). https://doi.org/10.1098/rsos.180007

    Article  Google Scholar 

  14. 14.

    Anil, I., Gunday, S.T., Alagha, O., Bozkurt, A.: Synthesis, characterization, and swelling behaviors of poly(acrylic acid-co-acrylamide)/pozzolan superabsorbent polymers. J. Polym. Environ. 27, 1086–1095 (2019). https://doi.org/10.1007/s10924-019-01415-0

    Article  Google Scholar 

  15. 15.

    Kalaleh, H.-A., Tally, M., Atassi, Y.: Preparation of bentonite-g-poly(acrylate-co-acrylamide) superabsorbent polymer composite for agricultural applications: optimization and characterization. Polym. Sci. Ser. B. 57, 750–758 (2015). https://doi.org/10.1134/s1560090415060081

    Article  Google Scholar 

  16. 16.

    Zhang, Y., Zhao, L., Chen, Y.: Synthesis and characterization of starch-g-Poly(acrylic acid)/Organo-Zeolite 4A superabsorbent composites with respect to their water-holding capacities and nutrient-release behavior. Polym. Compos. 38, 1838–1848 (2017). https://doi.org/10.1002/pc.23754

    Article  Google Scholar 

  17. 17.

    Kabiri, K., Zohuriaan-Mehr, M.J.: Superabsorbent hydrogel composites. Polym. Adv. Technol. 14, 438–444 (2003). https://doi.org/10.1002/pat.356

    Article  Google Scholar 

  18. 18.

    Pourjavadi, A., Ayyari, M., Amini-Fazl, M.S.: Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur. Polym. J. 44, 1209–1216 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.032

    Article  Google Scholar 

  19. 19.

    Bao, Y., Ma, J., Li, N.: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 84, 76–82 (2011). https://doi.org/10.1016/j.carbpol.2010.10.061

    Article  Google Scholar 

  20. 20.

    Abdelaziz, M.S., Salama, H.E.: Effect of vinyl montmorillonite on the physical, responsive and antimicrobial properties of the optimized polyacrylic acid/chitosan superabsorbent via Box–Behnken model. Int. J. Biol. Macromol. 116, 840–848 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.081

    Article  Google Scholar 

  21. 21.

    Xie, L., Liu, M., Ni, B., Zhang, X., Wang, Y.: Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem. Eng. J. 167, 342–348 (2011). https://doi.org/10.1016/j.cej.2010.12.082

    Article  Google Scholar 

  22. 22.

    Said, M., Atassi, Y., Tally, M., Khatib, H.: Environmentally friendly chitosan-g-poly(acrylic acid-co-acrylamide)/ground basalt superabsorbent composite for agricultural applications. J. Polym. Environ. 26, 3937–3948 (2018). https://doi.org/10.1007/s10924-018-1269-5

    Article  Google Scholar 

  23. 23.

    Pourjavadi, A., Amini-Fazl, M.S., Ayyari, M.: Optimization of synthetic conditions CMC-g-poly (acrylic acid)/Celite composite superabsorbent by Taguchi method and determination of its absorbency under load. Express Polym. Lett. 1, 488–494 (2007). https://doi.org/10.3144/expresspolymlett.2007.69

    Article  Google Scholar 

  24. 24.

    Vafaei, M., Allahverdi, A.: Influence of calcium aluminate cement on geopolymerization of natural pozzolan. Constr. Build. Mater. 114, 290–296 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.204

    Article  Google Scholar 

  25. 25.

    González-García, D.M., Téllez-Jurado, L., Jiménez-Álvarez, F.J., Balmori-Ramírez, H.: Structural study of geopolymers obtained from alkali-activated natural pozzolan feldspars. Ceram. Int. 43, 2606–2613 (2017). https://doi.org/10.1016/j.ceramint.2016.11.070

    Article  Google Scholar 

  26. 26.

    Moufti, M.R., Sabtan, A.A., El-Mahdy, O.R., Shehata, W.M.: Assessment of the industrial utilization of scoria materials in central Harrat Rahat. Saudi Arabia Eng. Geol. 57, 155–162 (2000). https://doi.org/10.1016/s0013-7952(00)00024-7

    Article  Google Scholar 

  27. 27.

    Moon, J., Bae, S., Celik, K., Yoon, S., Kim, K.-H., Kim, K.S., Monteiro, P.J.M.: Characterization of natural pozzolan-based geopolymeric binders. Cem. Concr. Compos. 53, 97–104 (2014). https://doi.org/10.1016/j.cemconcomp.2014.06.010

    Article  Google Scholar 

  28. 28.

    Setina, J., Gabrene, A., Juhnevica, I.: Effect of pozzolanic additives on structure and chemical durability of concrete. Procedia Eng. 57, 1005–1012 (2013). https://doi.org/10.1016/j.proeng.2013.04.127

    Article  Google Scholar 

  29. 29.

    Celik, K., Jackson, M.D., Mancio, M., Meral, C., Emwas, A.H., Mehta, P.K., Monteiro, P.J.M.: High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete. Cem. Concr. Compos. 45, 136–147 (2014). https://doi.org/10.1016/j.cemconcomp.2013.09.003

    Article  Google Scholar 

  30. 30.

    Achiou, B., Elomari, H., Bouazizi, A., Karim, A., Ouammou, M., Albizane, A., Bennazha, J., Alami Younssi, S., El. Amrani, I.E.: Manufacturing of tubular ceramic microfiltration membrane based on natural pozzolan for pretreatment of seawater desalination. Desalination 419, 181–187 (2017). https://doi.org/10.1016/j.desal.2017.06.014

    Article  Google Scholar 

  31. 31.

    Omrane, M., Kenai, S., Kadri, E.-H., Aït-Mokhtar, A.: Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. J. Clean. Prod. 165, 415–430 (2017). https://doi.org/10.1016/j.jclepro.2017.07.139

    Article  Google Scholar 

  32. 32.

    Walker, R., Pavía, S.: Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes. Mater. Struct. 44, 1139–1150 (2010). https://doi.org/10.1617/s11527-010-9689-2

    Article  Google Scholar 

  33. 33.

    Haddad, R.H., Alshbuol, O.: Production of geopolymer concrete using natural pozzolan: a parametric study. Constr. Build. Mater. 114, 699–707 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.011

    Article  Google Scholar 

  34. 34.

    Al-Kutti, W., Nasir, M., Megat Johari, M.A., Islam, A.B.M.S., Manda, A.A., Blaisi, N.I.: An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites. Constr. Build. Mater. 159, 567–577 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.017

    Article  Google Scholar 

  35. 35.

    Gunes, A., Kitir, N., Turan, M., Elkoca, E., Yildirim, E., Avci, N.: Evaluation of effects of water-saving superabsorbent polymer on corn (Zea mays L.)yield and phosphorus fertilizer efficiency. Turk. J. Agric. For. 40, 365–378 (2016). https://doi.org/10.3906/tar-1511-126

    Article  Google Scholar 

  36. 36.

    Chen, X., Huang, L., Mao, X., Liao, Z., He, Z.: A comparative study of the cellular microscopic characteristics and mechanisms of maize seedling damage from superabsorbent polymers. Pedosphere 27, 274–282 (2017). https://doi.org/10.1016/s1002-0160(17)60305-9

    Article  Google Scholar 

  37. 37.

    Ates, S., Deniz, İ, Kirci, H., Atik, C., Okan, O.T.: Comparison of pulping and bleaching behaviors of some agricultural residues. Turk. J. Agric. For. 39, 144–153 (2015). https://doi.org/10.3906/tar-1403-41

    Article  Google Scholar 

  38. 38.

    Langridge, P.: Economic and academic importance of barley. In: Stein, N., Muehlbauer, G.J. (eds.) The Barley Genome, pp. 1–10. Springer, Switzerland (2018)

    Google Scholar 

  39. 39.

    Zhai, N., Wang, W., Wang, A.: Synthesis and swelling characteristics of a pH-responsive guar gum-g-poly(sodium acrylate)/medicinal stone superabsorbent composite. Polym. Compos. 32, 210–218 (2011). https://doi.org/10.1002/pc.21017

    Article  Google Scholar 

  40. 40.

    Gao, J., Yang, Q., Ran, F., Ma, G., Lei, Z.: Preparation and properties of novel eco-friendly superabsorbent composites based on raw wheat bran and clays. Appl. Clay Sci. 132–133, 739–747 (2016). https://doi.org/10.1016/j.clay.2016.08.021

    Article  Google Scholar 

  41. 41.

    Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., Reyhanitabar, A.: Synthesis, characterization, and swelling kinetic study of porous superabsorbent hydrogel nanocomposite based on sulfonated carboxymethylcellulose and silica nanoparticles. J. Porous Mater. 25, 1325–1335 (2017). https://doi.org/10.1007/s10934-017-0543-6

    Article  Google Scholar 

  42. 42.

    Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophyllsaandbof leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592 (1983). https://doi.org/10.1042/bst0110591

    Article  Google Scholar 

  43. 43.

    Sade, N., Galkin, E., Moshelion, M.: Measuring arabidopsis, tomato and barley leaf relative water content (RWC). Bio-Protocol 5, 66 (2015). https://doi.org/10.21769/BioProtoc.1451

    Article  Google Scholar 

  44. 44.

    Klinpituksa, P., Kosaiyakanon, P.: Superabsorbent polymer based on sodium carboxymethyl cellulose grafted polyacrylic acid by inverse suspension polymerization. Int. J. Polym. Sci. 2017, 1–6 (2017). https://doi.org/10.1155/2017/3476921

    Article  Google Scholar 

  45. 45.

    Wu, F., Zhang, Y., Liu, L., Yao, J.: Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr. Polym. 87, 2519–2525 (2012). https://doi.org/10.1016/j.carbpol.2011.11.028

    Article  Google Scholar 

  46. 46.

    Liu, Z., Miao, Y., Wang, Z., Yin, G.: Synthesis and characterization of a novel super-absorbent based on chemically modified pulverized wheat straw and acrylic acid. Carbohydr. Polym. 77, 131–135 (2009). https://doi.org/10.1016/j.carbpol.2008.12.019

    Article  Google Scholar 

  47. 47.

    Behrouzi, M., Moghadam, P.N.: Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth. Carbohydr. Polym. 202, 227–235 (2018). https://doi.org/10.1016/j.carbpol.2018.08.094

    Article  Google Scholar 

  48. 48.

    Fang, S., Wang, G., Li, P., Xing, R., Liu, S., Qin, Y., Yu, H., Chen, X., Li, K.: Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int. J. Biol. Macromol. 115, 754–761 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.072

    Article  Google Scholar 

  49. 49.

    Tomar, R.S., Gupta, I., Singhal, R., Nagpal, A.K.: Synthesis of poly(acrylamide-co-acrylic acid)-based super-absorbent hydrogels by gamma radiation: study of swelling behaviour and network parameters. Des. Monomers Polym. 10, 49–66 (2012). https://doi.org/10.1163/156855507779763685

    Article  Google Scholar 

  50. 50.

    Tomar, R.S., Gupta, I., Singhal, R., Nagpal, A.K.: Synthesis of poly (acrylamide-co-acrylic acid) based superabsorbent hydrogels: study of network parameters and swelling behaviour. Polym. Plast. Technol. Eng. 46, 481–488 (2007). https://doi.org/10.1080/03602550701297095

    Article  Google Scholar 

  51. 51.

    Memon, H., Wei, Y.: Welding and reprocessing of disulfide-containing thermoset epoxy resin exhibiting behavior reminiscent of a thermoplastic. J. Appl. Polym. Sci. 137, 49541 (2020). https://doi.org/10.1002/app.49541

    Article  Google Scholar 

  52. 52.

    Moharram, M.A., Allam, M.A.: Study of the interaction of poly(acrylic acid) and poly(acrylic acid-poly acrylamide) complex with bone powders and hydroxyapatite by using TGA and DSC. J. Appl. Polym. Sci. 105, 3220–3227 (2007). https://doi.org/10.1002/app.26267

    Article  Google Scholar 

  53. 53.

    Zhou, M., Yang, S., Zhou, Y., Qin, N., He, S., Lai, D., Xie, Z., Yuan, J.: Optimization of preparing poly(AM-DMDAAC)/MMT superabsorbent nanocomposite by orthogonal experiment. Polym. Korea. 38, 16–23 (2014). https://doi.org/10.7317/pk.2014.38.1.16

    Article  Google Scholar 

Download references

Funding

This work was supported by Deanship of Scientific Research of Imam Abdulrahman Bin Faisal University with the Grant Numbers of 2017-567-IRMC and 2017-609-IRMC. The authors gratefully acknowledge Ms. Fatimah Al-Fares due to her experimental work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyda Tugba Gunday.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gunday, S.T., Tombuloglu, H., Anil, I. et al. Natural pozzolan super-absorbent polymer: synthesis, characterization, and its application on plant growing under drought condition. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00404-1

Download citation

Keywords

  • Irrigation water management
  • Drought competing
  • Natural pozzolan
  • Super-absorbent polymer
  • Water swelling