Low-temperature synthesis of kerosene- and diesel-range fuels from waste plastics using natural potash catalyst


The current study tested the hypothesis of whether the low-temperature catalytic cracking of waste plastics would generate carbon fules using high-density polyethylene (HDPE) polymer by potash as a novel catalyst for both energy recovery and carbon recycling. We applied a one-stage pyrolysis reactor system with a 75 min reaction time to observe the highest yield at a low temperature range of 70–170 °C. The effects of the potash and zeolite catalysts, temperature, and catalyst–polymer ratio on the pyrolysis liquid yield and hydrocarbon contents were determined. The mineral concentration of potash was analyzed semiquantitatively using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES) and X-ray diffractometer (XRD). The ICP-OES demonstrated that nine metals, in the order of K > Na > Fe > Si > Mg > Al > Cu > Ca > Ni, were predominant in the potash. GC–MS analysis of the liquid products showed that major catalytic cracking molecules are C11 to C20 as kerosene- to diesel-range liquid. Potash catalyst produced an average liquid conversion of 34.7% at a catalyst ratio of 30 wt% over a distillate temperature range of 76–140 °C, whereas zeolite generated 19.5% at the same catalyst ratio over 90–120 °C. Although the two catalysts favored mainly olefinic products, a higher potash ratio promoted a smaller carbon products with a purer composition. Our experiments demonstrated that the new natural potash catalyst could convert waste plastics into kerosene to diesel range of valuable and recyclable liquid products as potential renewable fuel sources for carbon recycling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Suhrhoff, T.J., Scholz-Böttcher, B.M.: Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics: a lab experiment. Mar. Pollut. Bull. 102, 84–94 (2016)

    Article  Google Scholar 

  2. 2.

    Ferber, N.L., Minh, D.P., Falcoz, Q., Meffre, A., Tessier-Doyen, N., Nzihou, A., Goetz, V.: Ceramics from municipal waste incinerator bottom ash and wasted clay for sensible heat storage at high temperature. Waste Biomass Valorization 11, 3107–3120 (2020)

    Article  Google Scholar 

  3. 3.

    Dankwah, J.R., Amoah, T., Dankwah, J., Fosu, A.Y.: Recycling mixed plastics waste as reductant in ironmaking. Ghana Min. J. 15, 73–80 (2015)

    Google Scholar 

  4. 4.

    Idumah, C.I., Nwuzor, I.C.: Novel trends in plastic waste management. SN Appl. Sci. 1, 1402 (2019)

    Article  Google Scholar 

  5. 5.

    Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Nizami, A.S.: Catalytic pyrolysis of plastic waste: a review. Process Saf. Environ. Prot. 102, 822–838 (2016)

    Article  Google Scholar 

  6. 6.

    Hassan, H., Lim, J.K., Hameed, B.H.: Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresour. Technol. 221, 645–655 (2016)

    Article  Google Scholar 

  7. 7.

    Miskolczi, N., Ateş, F., Borsodi, N.: Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties. Bioresour. Technol. 144, 370–379 (2013)

    Article  Google Scholar 

  8. 8.

    Fivga, A., Dimitriou, I.: Pyrolysis of plastic waste for production of heavy fuel substitute: a techno-economic assessment. Energy 149, 865–874 (2018)

    Article  Google Scholar 

  9. 9.

    Kumar, S., Singh, R.K.: Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz. J. Chem. Eng. 28, 659–667 (2011)

    Article  Google Scholar 

  10. 10.

    Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., Atong, D.: Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renew. Energy. 79, 28–37 (2015)

    Article  Google Scholar 

  11. 11.

    Ratnasari, D.K., Nahil, M.A., Williams, P.: Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J. Anal. Appl. Pyrolysis. 124, 631–637 (2017)

    Article  Google Scholar 

  12. 12.

    Anuar Sharuddin, S.D., Abnisa, F., WanbDaud, W.M.A., Aroua, M.K.: A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115, 308–326 (2016)

    Article  Google Scholar 

  13. 13.

    Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Bilbao, J., Olazar, M.: Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity. Ind. Eng. Chem. Res. 52, 10637–10645 (2013)

    Article  Google Scholar 

  14. 14.

    Chen, D., Yin, L., Wang, H., He, P.: Pyrolysis technologies for municipal solid waste: a review. Waste Manag. 34, 2466–2486 (2014)

    Article  Google Scholar 

  15. 15.

    Zaman, C.Z., Pal, K., Yehye, W.A., Sagadevan, S., Shah, S.T., Adebisi, G.A., Marliana, E., Rafique, R.F., Johan, R.B.: Pyrolysis: a sustainable way to generate energy from waste. IntechOpen, Croatia (2017)

    Google Scholar 

  16. 16.

    Sudi, P.D., Maina, H.M., Bello, H., Hauwa, S.M., Modibbo, A.A.: Studies of some essential elements composition of potash deposits found in Yusufari local government area of Yobe State,Nigeria. Chem. Sci. Int. J. 10, 1–6 (2016)

    Article  Google Scholar 

  17. 17.

    Pedrotti, M.L., Petit, S., Elineau, A., Bruzaud, S., Crebassa, J.-C., Dumontet, B., Martí, E., Gorsky, G., Cózar, A.: Changes in the floating plastic pollution of the mediterranean sea in relation to the distance to land. PLoS ONE 11, 1–14 (2016)

    Article  Google Scholar 

  18. 18.

    Huang, Z., Cheng, C., Zhong, H., Li, L., Guo, Z., Yu, X., He, G., Han, H., Deng, L., Fu, W.: Flotation of sylvite from potash ore by using the Gemini surfactant as a novel flotation collector. Miner. Eng. 132, 22–26 (2019)

    Article  Google Scholar 

  19. 19.

    Rawashdeh, R.A., Xavier-Oliveira, E., Maxwell, P.: The potash market and its future prospects. Resour. Policy. 47, 154–163 (2016)

    Article  Google Scholar 

  20. 20.

    Al Rawashdeh, R., Maxwell, P.: Analysing the world potash industry. Resour. Policy. 41, 143–151 (2014)

    Article  Google Scholar 

  21. 21.

    Shao, J., Yan, R., Chen, H., Yang, H., Lee, D.H.: Catalytic effect of metal oxides on pyrolysis of sewage sludge. Fuel Process. Technol. 91, 1113–1118 (2010)

    Article  Google Scholar 

  22. 22.

    Nwankwor, P.E., Onuigbo, I.O., Chukwuneke, C.E., Yahaya, M.F., Agboola, B.O., Jahng, W.J.: Synthesis of gasoline range fuels by the catalytic cracking of waste plastics using titanium dioxide and zeolite. Int. J. Energy Environ. Eng. (2020). https://doi.org/10.1007/s40095-020-00359-9

    Article  Google Scholar 

  23. 23.

    Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M.: Conversion of low density polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel. Fuel 192, 71–82 (2017)

    Article  Google Scholar 

  24. 24.

    Yousefi, S., Ghasemi, B.: Precipitator concentration-dependent opto-structural properties of MgO nanoparticles fabricated using natural brine. SN Appl. Sci. 2, 852 (2020)

    Article  Google Scholar 

  25. 25.

    Akubo, K., Nahil, M.A., Williams, P.T.: Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. J. Energy Inst. 92, 195–202 (2019)

    Article  Google Scholar 

  26. 26.

    San You, Y., Kim, J.-H., Seo, G.: Liquid-phase catalytic degradation of polyethylene wax over MFI zeolites with different particle sizes. Polym. Degrad. Stab. 70, 365–371 (2000)

    Article  Google Scholar 

  27. 27.

    Fakinle, B.S., Adesanmi, A.J., Olalekan, A.P., Alagbe, A.A., Odekanle, E.L., Sonibare, J.A.: Changes in evaporative emissions from gasoline in the Nigeria market. Pet. Sci. Technol. 35, 1040–1046 (2017)

    Article  Google Scholar 

  28. 28.

    Abbas-Abadi, M.S., Haghighi, M.N., Yeganeh, H.: Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor. Fuel Process. Technol. 109, 90–95 (2013)

    Article  Google Scholar 

  29. 29.

    Marcilla, A., del Remedio Hernández, R., García, Á.N.: Study of the polymer–catalyst contact effectivity and the heating rate influence on the HDPE pyrolysis. J. Anal. Appl. Pyrolysis. 79, 424–432 (2007)

    Article  Google Scholar 

  30. 30.

    Miandad, R., Barakat, M.A., Rehan, M., Aburiazaiza, A.S., Ismail, I.M.I., Nizami, A.S.: Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Manag. 69, 66–78 (2017)

    Article  Google Scholar 

  31. 31.

    Seo, Y.-H., Lee, K.-H., Shin, D.-H.: Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis. J. Anal. Appl. Pyrolysis. 70, 383–398 (2003)

    Article  Google Scholar 

  32. 32.

    Marcilla, A., García-Quesada, J.C., Sánchez, S., Ruiz, R.: Study of the catalytic pyrolysis behaviour of polyethylene–polypropylene mixtures. J. Anal. Appl. Pyrolysis. 74, 387–392 (2005)

    Article  Google Scholar 

  33. 33.

    López, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., Aranzabal, A.: Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl. Catal. B Environ. 104, 211–219 (2011)

    Article  Google Scholar 

  34. 34.

    Li, J., Chen, X., Liu, Y., Xiong, Q., Zhao, J., Fang, Y.: Effect of ash composition (Ca, Fe, and Ni) on petroleum coke ash fusibility. Energy Fuels. 31, 6917–6927 (2017)

    Article  Google Scholar 

  35. 35.

    Aluri, S., Syed, A., Flick, D.W., Muzzy, J.D., Sievers, C., Agrawal, P.K.: Pyrolysis and gasification studies of model refuse derived fuel (RDF) using thermogravimetric analysis. Fuel Process. Technol. 179, 154–166 (2018)

    Article  Google Scholar 

  36. 36.

    Sarker, M., Kabir, A., Rashid, M.M., Molla, M., Mohammad, A.D.: Waste polyethylene terephthalate (PETE-1) conversioninto liquid fuel. J. Fundam. Renew. Energy Appl. 1, 1–5 (2011)

    Google Scholar 

  37. 37.

    Panda, A.K.: Thermo-catalytic degradation of different plastics to drop in liquid fuel using calcium bentonite catalyst. Int. J. Ind. Chem. 9, 167–176 (2018)

    Article  Google Scholar 

  38. 38.

    Ahmad, I., Khan, M.I., Khan, H., Ishaq, M., Khan, R., Gul, K., Ahmad, W.: Pyrolysis of HDPE into fuel like products: evaluating catalytic performance of plain and metal oxides impregnated waste brick kiln dust. J. Anal. Appl. Pyrolysis. 124, 195–203 (2017)

    Article  Google Scholar 

  39. 39.

    Chukwuneke, C., O’Donnell Sylvester, K.K., Lagre, S., Siebert, J., Uche, O., Agboola, B., Okoro, L., Jahng, W.J.: Synthesis of C5–C22 hydrocarbon fuel from ethylene-based polymers. Int. J. Sci. Eng. Res. 5, 805–809 (2014)

    Google Scholar 

  40. 40.

    Duan, A., Li, R., Jiang, G., Gao, J., Zhao, Z., Wan, G., Zhang, D., Huang, W., Chung, K.H.: Hydrodesulphurization performance of NiW/TiO2–Al2O3 catalyst for ultra clean diesel. Catal. Today 140, 187–191 (2009)

    Article  Google Scholar 

Download references


The present study was supported in part by Research Assistantship and Teaching Assistantship from the American University of Nigeria and Julia Foundation. The Research Fund was generously awarded from the Dean’s office of Arts and Sciences at the American University of Nigeria.

Author information



Corresponding author

Correspondence to Wan Jin Jahng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

John, D., Chukwuneke, C.E., Onuigbo, I.O. et al. Low-temperature synthesis of kerosene- and diesel-range fuels from waste plastics using natural potash catalyst. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00387-z

Download citation


  • Potash
  • Zeolite
  • Low-temperature catalytic pyrolysis
  • HDPE polymer
  • Waste plastics
  • Alternative energy
  • Carbon recycling