Enhancement of solar still performance via wet wick, different aspect ratios, cover cooling, and reflectors

Abstract

The present study presents an enhancement in wick solar stills performance depending on using different aspect ratios with the same project area and wick materials, glass cover cooling, and external reflectors after practical knowledge of the best wick material type and dimensions. The proposed three stills (A), (B), and (C) have evaporation area dimensions of 1 × 0.85, 1.5 × 0.57, and 2 × 0.425 m2, with an aspect ratio of 1.18, 2.63, and 4.71, respectively. The results revealed that the solar still with medium dimensions set has the best performance. Also, adding a top and bottom reflector to type (B) solar still with cotton cloth wicks increased the freshwater productivity and energy efficiency by 37.99 and 39.96%, respectively, compared to type (A) solar still with cotton cloth wicks. Moreover, the cost of one liter of freshwater distillate was decreased by 1.82%. Applying glass cover cooling on type (B) solar still with cotton cloth wicks increased the freshwater productivity and energy efficiency by 30.59 and 33.13%, respectively, compared to type (A) solar still with cotton cloth wicks. Furthermore, we have a decrement in the cost of one liter of freshwater distillate by 7.69%. Moreover, adding reflectors and cover cooling together to wick solar still increased the freshwater productivity and energy efficiency by 52.36 and 58.5%, respectively. On the other hand, the cost per liter of freshwater was reduced by 9.8%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Holdren, J.P., Ehrlich, P.R.: Human population and the global environment: population growth, rising per capita material consumption, and disruptive technologies have made civilization a global ecological force. Am. Sci. 62, 282–292 (1974)

    Google Scholar 

  2. 2.

    Nisan, S., Benzarti, N.: A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs. Desalination 229, 125–146 (2008)

    Article  Google Scholar 

  3. 3.

    Al-Karaghouli, A., Kazmerski, L.L.: Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24, 343–356 (2013)

    Article  Google Scholar 

  4. 4.

    Katekar, V.P., Deshmukh, S.S.: A review on research trends in solar still designs for domestic and industrial applications. J. Clean. Prod. 257, 120544 (2020)

    Article  Google Scholar 

  5. 5.

    Sharshir, S.W., Yang, N., Peng, G., Kabeel, A.E.: Factors affecting solar stills productivity and improvement techniques: a detailed review. Appl. Therm. Eng. 100, 267–284 (2016)

    Article  Google Scholar 

  6. 6.

    Singh, H.N., Tiwari, G.N.: Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination 168, 145–150 (2004)

    Article  Google Scholar 

  7. 7.

    Wang, Y., Kandeal, A.W., Swidan, A., Sharshir, S.W., Abdelaziz, G.B., Halim, M.A., Kabeel, A.E., Yang, N.: Prediction of tubular solar still performance by machine learning integrated with Bayesian optimization algorithm. Appl. Therm. Eng. 184, 116233 (2021)

    Article  Google Scholar 

  8. 8.

    Kabeel, A.E., Sharshir, S.W., Abdelaziz, G.B., Halim, M.A., Swidan, A.: Improving performance of tubular solar still by controlling the water depth and cover cooling. J. Clean. Prod. 233, 848–856 (2019)

    Article  Google Scholar 

  9. 9.

    Elmaadawy, K., Kandeal, A.W., Khalil, A., Elkadeem, M.R., Liu, B., Sharshir, S.W.: Performance improvement of double slope solar still via combinations of low cost materials integrated with glass cooling. Desalination 500, 114856 (2021)

    Article  Google Scholar 

  10. 10.

    Sharshir, S.W., Eltawil, M.A., Algazzar, A.M., Sathyamurthy, R., Kandeal, A.W.: Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: energy, exergy and economic analysis. Appl. Therm. Eng. 174, 115278 (2020)

    Article  Google Scholar 

  11. 11.

    Kabeel, A.E., Sathyamurthy, R., Sharshir, S.W., Muthumanokar, A., Panchal, H., Prakash, N., Prasad, C., Nandakumar, S., El Kady, M.S.: Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. J. Clean. Prod. 213, 185–191 (2019)

    Article  Google Scholar 

  12. 12.

    Sharshir, S.W., Kandeal, A.W., Ismail, M., Abdelaziz, G.B., Kabeel, A.E., Yang, N.: Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach. Appl. Therm. Eng. 160, 113997 (2019)

    Article  Google Scholar 

  13. 13.

    Sharshir, S.W., Elkadeem, M.R., Meng, A.: Performance enhancement of pyramid solar distiller using nanofluid integrated with v-corrugated absorber and wick: an experimental study. Appl. Therm. Eng. 168, 114848 (2020)

    Article  Google Scholar 

  14. 14.

    El-Bahi, A., Inan, D.: A solar still with minimum inclination, coupled to an outside condenser. Desalination 123, 79–83 (1999)

    Article  Google Scholar 

  15. 15.

    Sharshir, S.W., Peng, G., Wu, L., Yang, N., Essa, F.A., Elsheikh, A.H., Mohamed, S.I.T., Kabeel, A.E.: Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl. Therm. Eng. 113, 684–693 (2017)

    Article  Google Scholar 

  16. 16.

    Sathyamurthy, R., Kabeel, A.E., Balasubramanian, M., Devarajan, M., Sharshir, S.W., Manokar, A.M.: Experimental study on enhancing the yield from stepped solar still coated using fumed silica nanoparticle in black paint. Mater. Lett. 272, 127873 (2020)

    Article  Google Scholar 

  17. 17.

    Abdelaziz, G.B., El-Said, E.M.S., Bedair, A.G., Sharshir, S.W., Kabeel, A.B., Elsaid, A.M.: Experimental study of activated carbon as a porous absorber in solar desalination with environmental, exergy, and economic analysis, process safety and environmental Protection, (2021)

  18. 18.

    Sharshir, S.W., El-Samadony, M.O.A., Peng, G., Yang, N., Essa, F.A., Hamed, M.H., Kabeel, A.E.: Performance enhancement of wick solar still using rejected water from humidification-dehumidification unit and film cooling. Appl. Therm. Eng. 108, 1268–1278 (2016)

    Article  Google Scholar 

  19. 19.

    Sharshir, S.W., Algazzar, A.M., Elmaadawy, K.A., Kandeal, A.W., Elkadeem, M.R., Arunkumar, T., Zang, J., Yang, N.: New hydrogel materials for improving solar water evaporation, desalination and wastewater treatment: a review. Desalination 491, 114564 (2020)

    Article  Google Scholar 

  20. 20.

    Sharshir, S.W., Peng, G., Elsheikh, A.H., Edreis, E.M.A., Eltawil, M.A., Abdelhamid, T., Kabeel, A.E., Zang, J., Yang, N.: Energy and exergy analysis of solar stills with micro/nano particles: a comparative study. Energy Convers. Manag. 177, 363–375 (2018)

    Article  Google Scholar 

  21. 21.

    Sharshir, S.W., Ellakany, Y.M., Eltawil, M.A.: Exergoeconomic and environmental analysis of seawater desalination system augmented with nanoparticles and cotton hung pad. J. Clean. Prod. 248, 119180 (2020)

    Article  Google Scholar 

  22. 22.

    Sharshir, S.W., Peng, G., Wu, L., Essa, F.A., Kabeel, A.E., Yang, N.: The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Appl. Energy 191, 358–366 (2017)

    Article  Google Scholar 

  23. 23.

    Sharshir, S.W., Peng, G., Yang, N., Eltawil, M.A., Ali, M.K.A., Kabeel, A.E.: A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater. Energy Convers. Manag. 124, 287–296 (2016)

    Article  Google Scholar 

  24. 24.

    Sharshir, S.W., Peng, G., Yang, N., El-Samadony, M.O.A., Kabeel, A.E.: A continuous desalination system using humidification—dehumidification and a solar still with an evacuated solar water heater. Appl. Therm. Eng. 104, 734–742 (2016)

    Article  Google Scholar 

  25. 25.

    El-Said, E.M.S., Abdelaziz, G.B.: Experimental investigation and economic assessment of a solar still performance using high-frequency ultrasound waves atomizer. J. Clean. Prod. 256, 120609 (2020)

    Article  Google Scholar 

  26. 26.

    Peng, G., Ding, H., Sharshir, S.W., Li, X., Liu, H., Ma, D., Wu, L., Zang, J., Liu, H., Yu, W., Xie, H., Yang, N.: Low-cost high-efficiency solar steam generator by combining thin film evaporation and heat localization: both experimental and theoretical study. Appl. Therm. Eng. 143, 1079–1084 (2018)

    Article  Google Scholar 

  27. 27.

    Elsheikh, A.H., Sharshir, S.W., Ahmed Ali, M.K., Shaibo, J., Edreis, E.M.A., Abdelhamid, T., Du, C., Haiou, Z.: Thin film technology for solar steam generation: a new dawn. Sol. Energy 177, 561–575 (2019)

    Article  Google Scholar 

  28. 28.

    Peng, G., Deng, S., Sharshir, S.W., Ma, D., Kabeel, A.E., Yang, N.: High efficient solar evaporation by airing multifunctional textile. Int. J. Heat Mass Transf. 147, 118866 (2020)

    Article  Google Scholar 

  29. 29.

    Sharshir, S.W., Peng, G., Elsheikh, A.H., Eltawil, M.A., Elkadeem, M.R., Dai, H., Zang, J., Yang, N.: Influence of basin metals and novel wick-metal chips pad on the thermal performance of solar desalination process. J. Clean. Prod. 248, 119224 (2020)

    Article  Google Scholar 

  30. 30.

    Thakur, A.K., Sathyamurthy, R., Sharshir, S.W., Elnaby Kabeel, A., Shamsuddin Ahmed, M., Hwang, J.-Y.: A novel reduced graphene oxide based absorber for augmenting the water yield and thermal performance of solar desalination unit. Mater. Lett. 286, 128867 (2021)

    Article  Google Scholar 

  31. 31.

    Manikandan, V., Shanmugasundaram, K., Shanmugan, S., Janarthanan, B., Chandrasekaran, J.: Wick type solar stills: a review. Renew. Sustain. Energy Rev. 20, 322–335 (2013)

    Article  Google Scholar 

  32. 32.

    Alaian, W.M., Elnegiry, E.A., Hamed, A.M.: Experimental investigation on the performance of solar still augmented with pin-finned wick. Desalination 379, 10–15 (2016)

    Article  Google Scholar 

  33. 33.

    Abdullah, A.S., Alarjani, A., Abou Al-sood, M.M., Omara, Z.M., Kabeel, A.E., Essa, F.A.: Rotating-wick solar still with mended evaporation technics: Experimental approach. Alex. Eng. J. 58, 1449–1459 (2019)

    Article  Google Scholar 

  34. 34.

    Kabeel, A.E.: Performance of solar still with a concave wick evaporation surface. Energy 34, 1504–1509 (2009)

    Article  Google Scholar 

  35. 35.

    Abdel-Rehim, Z.S., Lasheen, A.: Experimental and theoretical study of a solar desalination system located in Cairo, Egypt. Desalination 217, 52–64 (2007)

    Article  Google Scholar 

  36. 36.

    Omara, Z.M., Kabeel, A.E., Abdullah, A.S.: A review of solar still performance with reflectors. Renew. Sustain. Energy Rev. 68, 638–649 (2017)

    Article  Google Scholar 

  37. 37.

    Tanaka, H.: Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination 249, 130–134 (2009)

    Article  Google Scholar 

  38. 38.

    Omara, Z.M., Kabeel, A.E., Younes, M.M.: Enhancing the stepped solar still performance using internal and external reflectors. Energy Convers. Manage. 78, 876–881 (2014)

    Article  Google Scholar 

  39. 39.

    El-Samadony, Y.A.F., Abdullah, A.S., Omara, Z.M.: Experimental study of stepped solar still integrated with reflectors and external condenser. Exp. Heat Transf. 28, 392–404 (2015)

    Article  Google Scholar 

  40. 40.

    Omara, Z.M., Abdullah, A.S., Kabeel, A.E., Essa, F.A.: The cooling techniques of the solar stills’ glass covers—a review. Renew. Sustain. Energy Rev. 78, 176–193 (2017)

    Article  Google Scholar 

  41. 41.

    Somwanshi, A., Tiwari, A.K.: Performance enhancement of a single basin solar still with flow of water from an air cooler on the cover. Desalination 352, 92–102 (2014)

    Article  Google Scholar 

  42. 42.

    Abdullah, A.S.: Improving the performance of stepped solar still. Desalination 319, 60–65 (2013)

    Article  Google Scholar 

  43. 43.

    Dhiman, N.K., Tiwari, G.N.: Effect of water flowing over the glass cover of a multi-wick solar still. Energy Convers. Manag. 30, 245–250 (1990)

    Article  Google Scholar 

  44. 44.

    Zurigat, Y.H., Abu-Arabi, M.K.: Modelling and performance analysis of a regenerative solar desalination unit. Appl. Therm. Eng. 24, 1061–1072 (2004)

    Article  Google Scholar 

  45. 45.

    Holman, J., Gajda, W.J.N.Y. : Experimental Methods for Engineers. McGraw-Hill Book Company, (1978)

  46. 46.

    Kabeel, A.E., Abdelgaied, M., Eisa, A.: Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials. J. Clean. Prod. 183, 20–25 (2018)

    Article  Google Scholar 

  47. 47.

    Sharshir, S., Elsheikh, A., Peng, G., Yang, N., El-Samadony, M., Kabeel, A.: Thermal performance and exergy analysis of solar stills–A review. Renew. Sustain. Energy Rev. 73, 521–544 (2017)

    Article  Google Scholar 

  48. 48.

    Kabeel, A., Abdelgaied, M.J.J.O.C.P.: Performance enhancement of a photovoltaic panel with reflectors and cooling coupled to a solar still with air injection, 224, 40–49 (2019)

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Swellam W. Sharshir or Gamal B. Abdelaziz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharshir, S.W., Salman, M., El-Behery, S.M. et al. Enhancement of solar still performance via wet wick, different aspect ratios, cover cooling, and reflectors. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00386-0

Download citation

Keywords

  • Solar desalination
  • Wick solar still
  • Different configuration
  • Wicks
  • Cover cooling
  • Reflectors