Study on summer thermal performance of a solar ventilated window integrated with thermoelectric air-cooling system


In this paper, a thermoelectric air-cooling system was used to cool down the airflow window glazing surfaces during summer in hot climates by which cooling load of the indoors and occupant’s thermal discomfort near the window reduce. The performance of the proposed system was modeled analytically, in which the models used were validated by the literature experiment results. To determine the thermoelectric system specifications, the three features of the system including the time working interval, the number of modules, and the degree of air temperature attenuation were investigated. The results show that using the thermoelectric air cooling system for the limited time interval within hours of peak cooling load can significantly reduce the energy consumption, while using the system for a longer time interval not only cannot decrease the energy consumption but also may increase. Besides, the results reveal that the thermoelectric system with 15 modules is required to be energy efficient. On the other hand, an increase in the number of modules more than 20 has no considerable effect on energy saving. Furthermore, the percentage of energy saving is 6.5% for 5 °C air cooling and reached a maximum of 7.1% for 7 °C air cooling, while for 10 °C, this value is zero. The mean reduction of the maximum interior glazing surface temperature is 5.9 and 7.4 °C for air cooling degrees of 5 and 10 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


A :

Area (m2)

b :

Heat sink base thickness (m)

Dh :

Hydraulic diameter (m)

H :

Height of heat sink fin

h :

Convective heat coefficient (W/m2 \({^\circ{\rm C} }\))

I :

Solar radiation (W/m2)

k :

Thermal conductivity (W/m \({^\circ{\rm C} }\))

L :

Heat sink length (m)

M :

Metabolic rate (W/m2)

N f :

The number of fins

P :

Power (W)

p :

Heat sink pitch (m)

P v :

Water vapor pressure (Pa)

Pr :

Prandtl number

Q :

Heat gain (Wh)

\(\dot{Q}\) :

Heat flux (W)

R :

Thermal resistance (m°C/W)

RH :

Relative humidity (%)

ReDh :

Reynolds number

T :

Temperature (\({^\circ{\rm C} }\))

t :

Time (h)- fin thickness (m)

W :

Heat sink depth (m)

x* :

Dimensionless length of the heat sink

α :

Seebeck coefficient

η :

Fin efficiency

τ :

Glass transmissivity


Cooling side of the module










Heating side of the module






Mean radiant









∆T :

Temperature difference of glass and indoors


  1. 1.

    Wright, J.L.: Effective U-values and shading coefficients of preheat/supply air glazing systems. In: Proceedings of Solar Energy Society of Canada, Winnipeg, Canada, pp. 219–224 (1986)

  2. 2.

    Gosselin, J.R., Chen, Q.: A dual airflow window for indoor air quality improvement and energy conservation in buildings. HVAC. R. Res. 14, 359–372 (2008).

    Article  Google Scholar 

  3. 3.

    Chow, T.T., Lin, Z., He, W., Chan, A.L.S., Fong, K.F.: Use of ventilated solar screen window in warm climate. Appl. Ther. Eng. 26, 1910–1918 (2006).

    Article  Google Scholar 

  4. 4.

    Zhang, C., Wang, J., Xu, X., Zou, F., Yu, J.: Modeling and thermal performance evaluation of a switchable triple glazing exhaust air window. Appl. Therm. Eng. 92, 8–17 (2016).

    Article  Google Scholar 

  5. 5.

    Kim, M.H., Oh, C.Y., Hwang, J.H., Choi, H.W., Yang, W.J.: Thermal performance of the exhausting and the semi-exhausting triple-glazed airflow windows. Int. J. Energy Res. 30, 177–190 (2006).

    Article  Google Scholar 

  6. 6.

    Du, L., Ping, L., Yongming, C.: Study and analysis of air flow characteristics in Trombe wall. Renew. Energy. 162, 234–241 (2020).

    Article  Google Scholar 

  7. 7.

    Bellos, E., Tzivanidis, C., Zisopoulou, E., Mitsopoulos, G., Antonopoulos, K.A.: An innovative Trombe wall as a passive heating system for a building in Athens—A comparison with the conventional Trombe wall and the insulated wall. Energy. Buildings. 133, 754–769 (2016).

    Article  Google Scholar 

  8. 8.

    Wang, D., Hu, L., Du, H., Liu, Y., Huang, J., Xu, Y., Liu, J.: Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls. Renew. Sustain. Energy Rev. 124, 109772 (2020).

    Article  Google Scholar 

  9. 9.

    Chow, T.T., Pei, G., Chan, L.S., Lin, Z., Fong, K.F.: A comparative study of PV glazing performance in warm climate. Indoor. Built. Environ. 18, 32–40 (2009).

    Article  Google Scholar 

  10. 10.

    Hweij, W.A., Al Touma, A., Ghali, K., Ghaddar, N.: Evaporatively-cooled window driven by solar chimney to improve energy efficiency and thermal comfort in dry desert climate. Energy. Build. 139, 755–761 (2017).

    Article  Google Scholar 

  11. 11.

    Ghadimi, M., Ghadamian, H., Hamidi, A.A., Fazelpour, F., Behghadam, M.A.: Analysis of free and forced convection in airflow windows using numerical simulation of heat transfer. Int. J. Energy. Environ. Eng. 3, 14 (2012).

    Article  Google Scholar 

  12. 12.

    Wei, J., Zhao, J., Chen, Q.: Optimal design for a dual-airflow window for different climate regions in China. Energy. Build. 42, 2200–2205 (2010).

    MathSciNet  Article  Google Scholar 

  13. 13.

    Scaff, M.C., Gosselin, L.: Summer performance of ventilated windows with absorbing or smart glazings. Sol. Energy 105, 2–13 (2014).

    Article  Google Scholar 

  14. 14.

    Lago, T.G.S., Ismail, K.A.R., Lino, F.A.M.: Ventilated double glass window with reflective film: modeling and assessment of performance. Sol. Energy. 185, 72–88 (2019).

    Article  Google Scholar 

  15. 15.

    Hu, Y., Heiselberg, P.K.: A new ventilated window with PCM heat exchanger—Performance analysis and design optimization. Energy. Build. 169, 185–194 (2018).

    Article  Google Scholar 

  16. 16.

    Hu, Y., Heiselberg, P.K., Guo, R.: Ventilation cooling/heating performance of a PCM enhanced ventilated window: an experimental study. Energy. Build. 214, 109903 (2020).

    Article  Google Scholar 

  17. 17.

    Hu, Y., Guo, R., Heiselberg, P.K.: Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study. Renew. Energy. 155, 134–152 (2020).

    Article  Google Scholar 

  18. 18.

    Wang, C., Ji, J., Uddin, M.M., Yu, B., Song, Z.: The study of a double-skin ventilated window integrated with CdTe cells in a rural building. Energy. 215 PA, 119043 (2021).

    Article  Google Scholar 

  19. 19.

    Al Touma, A., Ghali, K., Ghaddar, N., Ismail, N.: Solar chimney integrated with passive evaporative cooler applied on glazing surfaces. Energy. 115, 169–179 (2016).

    Article  Google Scholar 

  20. 20.

    Xu, X., Dessel, S.V.: Evaluation of a prototype active building envelope window-system. Energy. Build. 40, 168–174 (2008).

    Article  Google Scholar 

  21. 21.

    Arenas-Alonso, A., Palacios, R., Rodríguez-Pecharromán, R., Pagola, F.L.: Full-size prototype of active thermal windows based on thermoelectricity. In: 6th European Conference on Thermoelectrics, Paris, France (2008)

  22. 22.

    Zhao, D., Tan, G.: A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 66, 15–24 (2014).

    Article  Google Scholar 

  23. 23.

    Fraisse, G., Ramousse, J., Sgorlon, D., Goupil, C.: Comparison of different modeling approaches for thermoelectric elements. Energy Convers. Manage. 65, 351–356 (2013).

    Article  Google Scholar 

  24. 24.

    Pierres, N.L., Cosnier, M., Luo, L., Fraisse, G.: Coupling of thermoelectric modules with a photovoltaic panel for air pre-heating and pre-cooling application; an annual simulation. Int. J. Energy Res. 32, 1316–1328 (2008).

    Article  Google Scholar 

  25. 25.

    Han, H.S., Kim, S.Y., Ji. T.H. Jee, Y.J., Lee, D., Jang, K.S., Oh, D.H.: Heat sink design for a thermoelectric cooling system. 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 1222–1230 (2008)

  26. 26.

    Hadianfard, F., Omidvar, A., Naserian, M.: Study on the effect of heat sinks layout and air flow pattern through the fins on thermal performance of thermoelectric air-handling units. Mod. Mech. Eng. 18, 265–276 (2018). (In Persian)

    Google Scholar 

  27. 27.

    Balocco, C.: A non-dimensional analysis of a ventilated double facade energy performance. Energy. Build. 36, 35–40 (2004).

    Article  Google Scholar 

  28. 28.

    Gratia, E., De Herde, A.: Natural ventilation in a double-skin facade. Energy. Build. 36, 137–146 (2004).

    Article  Google Scholar 

  29. 29.

    Stec, W.J., van Paassen, A.H.C.: Symbiosis of the double skin façade with the HVAC system. Energy. Build. 37, 461–469 (2005).

    Article  Google Scholar 

  30. 30.

    Jiru, T.E., Haghighat, F.: Modeling ventilated double skin facade-A zonal approach. Energy. Build. 40, 1567–1576 (2008).

    Article  Google Scholar 

  31. 31.

    Zhang, C., Wang, J., Xu, X., Kang, J.: Development of a simplified model of switchable exhaust air insulation window. ASHRAE/IBPSA-USA Building Simulation Conference, Atlanta (2014)

  32. 32.

    Ismail, K.A.R., Henríquez, J.: Two-dimensional model for the double glass naturally airflow window. Int. J. Heat Mass Transf. 48, 461–475 (2005).

    Article  Google Scholar 

  33. 33.

    Gloriant, F., Tittelein, P., Joulin, A., Lassue, S.: Modeling a triple-glazed supply-air window. Build. Environ. 84, 1–9 (2015).

    Article  Google Scholar 

  34. 34.

    Khalvati, F., Omidvar, A.: Summer study on thermal performance of an exhausting airflow window in evaporatively-cooled buildings. Appl. Therm. Eng. 153, 147–158 (2019).

    Article  Google Scholar 

  35. 35.

    International Standard Organization. Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. ISO Standard No.7730. Retrieved from (2005)

  36. 36.

    Omidvar, A., Kim, J.: Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates. Build. Environ. 176, 106868 (2020).

    Article  Google Scholar 

  37. 37.

    Shen, L., Pu, X., Sun, Y., Chen, J.: A study on thermoelectric technology application in net zero energy buildings. Energy. 113, 9–24 (2016).

    Article  Google Scholar 

  38. 38.

    Iranian National Building Regulations. Chapter 19: Energy-saving, (In Persian). Retrieved from (2010)

  39. 39.

    British Standard. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. (BS EN 15251). Retrieved from (2007)

Download references

Author information



Corresponding author

Correspondence to Amir Omidvar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalvati, F., Omidvar, A. & Hadianfard, F. Study on summer thermal performance of a solar ventilated window integrated with thermoelectric air-cooling system. Int J Energy Environ Eng (2021).

Download citation


  • Airflow window
  • Solar ventilated
  • Thermoelectric cooling
  • Zonal model
  • Energy saving