Exploiting the rooftop solar photovoltaic potential of a tropical island state: case of the Mascarene Island of Mauritius


Mauritius relies heavily on fossil fuel imports to satisfy the energy requirements of its population. Urged by policies to address climate change at the national and international levels, the government is committed to promote sustainable development, with emphasis laid on reducing greenhouse gas emissions. Consequently, we provide an assessment of rooftop PV potential at the national level. A sampling strategy is used to acquire reduction coefficients, which are thereafter applied to energy-based equations. The result suggests that the rooftop PV potential at the country-scale is estimated at 20.04 GW with an annual energy output of 32,512 GWh. A novel architectural layout for a Solar City to be located at an identified optimum site is proposed. A shading analysis is conducted to verify the appropriateness of the city’s structural design to harness energy from the sun. An energy analysis performed, reveals that the Solar City has a solar power potential of 13.55 MW and an annual energy generation capacity equivalent to 21.99 GWh. Construction of the Solar City would help avert the emissions of 13,744 tons of CO2 annually.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    D’Amore, L., Kalifungwa: Meeting the challenges of climate change to tourism: case studies of best practice. . Cambridge Scholars Publishing, Cambridge (2014)

    Google Scholar 

  2. 2.

    Obergassel, W., Arens, C., Hermwille, L., Kreibich, N., Mersmann, F., Ott, H.E. and Wang-Helmreich, H. Phoenix from the ashes: an analysis of the Paris Agreement to the United Nations Framework Convention on Climate Change. 2015

  3. 3.

    Moka.mu. Moka, a sustainable city that focuses on solar energy, Available online at https://www.moka.mu/en/blog/smart-solutions/a-sustainable-city-that-focuses-on-solar-energy/. (2019). [Accessed on 9 Nov 2020]

  4. 4.

    GCF. Accelerating the Transformational Shift to a Low Carbon Economy in the Republic of Mauritius, available online at: https://www.greenclimate.fund/documents/20182/574760/Fundingproposal-FP033-UNDP-Mauritius.pdf/f9678474-67eb4083-9479–-dcae6db59f0. (2016). [Accessed on 30 Apr 2018]

  5. 5.

    EDB. Renewable energy, Available online at https://www.edbmauritius.org/opportunities/renewable-energy/. (2020). [Accessed on 9 Nov 2020]

  6. 6.

    Duvat, V.K., Anisimov, A., Magnan, A.K.: Assessment of coastal risk reduction and adaptation-labelled responses in Mauritius Island (Indian Ocean). Reg. Environ. Change 20(4), 1–15 (2020)

    Article  Google Scholar 

  7. 7.

    SM. Population and Vital Statistics - Year 2017, Available online at: http://statsmauritius.govmu.org/English/Publications/Documents/2018/EI1367/PopVitalYr17.pdf. (2018). [Accessed on 24 Apr 2018].

  8. 8.

    SM. Population Growth and Distribution, Available online at http://statsmauritius.govmu.org/English/Pages/2000/volumeIV/popu.htm. (2000). [Accessed on 24 Apr 2018].

  9. 9.

    Doorga, J.R.S., Rughooputh, S.D., Boojhawon, R.: High resolution spatio-temporal modelling of solar photovoltaic potential for tropical islands: case of Mauritius. Energy 169, 972–987 (2019)

    Article  Google Scholar 

  10. 10.

    Doorga, J.R., Rughooputh, S.D., Boojhawon, R.: Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: a case study in Mauritius. Renew. Energy 133, 1201–1219 (2019)

    Article  Google Scholar 

  11. 11.

    Khan, J., Arsalan, M.H.: Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: a perspective from planned neighborhood of Karachi-Pakistan. Renew. Energy 90, 188–203 (2016)

    Article  Google Scholar 

  12. 12.

    Assouline, D., Mohajeri, N., Scartezzini, J.L.: Quantifying rooftop photovoltaic solar energy potential: a machine learning approach. Sol. Energy 141, 278–296 (2017)

    Article  Google Scholar 

  13. 13.

    Dehwah, A.H., Asif, M.: Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates. Renew. Energy 131, 1288–1299 (2019)

    Article  Google Scholar 

  14. 14.

    Wiginton, L.K., Nguyen, H.T., Pearce, J.M.: Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 34(4), 345–357 (2010)

    Article  Google Scholar 

  15. 15.

    Gagnon, P., Margolis, R., Melius, J., Phillips, C., Elmore, R.: Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling. Environ. Res. Lett. 13(2), 024027 (2018)

    Article  Google Scholar 

  16. 16.

    Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Ho-Baillie, A.W.: Solar cell efficiency tables (version 52). Prog. Photovoltaics Res. Appl. 26(7), 427–436 (2018)

    Article  Google Scholar 

  17. 17.

    Doorga, J.R., Rughooputh, S.D., Boojhawon, R.: Modelling the global solar radiation climate of Mauritius using regression techniques. Renew. Energy 131, 861–878 (2019)

    Article  Google Scholar 

  18. 18.

    MESD. Moving towards renewable energy-Solar water heater grant scheme, Available online at: http://download.govmu.org/files/2016/MOVING%20TOWARDS%20RENEWABLE%20ENERGY%20-SOLAR%20WATER%20HEATER%20GRANT%20SCHEME.pdf. (2017) [Accessed on 26 Dec 2018].

  19. 19.

    Dehwah, A.H., Asif, M., Rahman, M.T.: Prospects of PV application in unregulated building rooftops in developing countries: a perspective from Saudi Arabia. Energy Build. 171, 76–87 (2018)

    Article  Google Scholar 

  20. 20.

    Wiki. List of building types, Available online at: https://en.wikipedia.org/wiki/Listofbuildingtypes#Specialty. (2018) [Accessed on 24 Dec 2018]

  21. 21.

    Noorollahi, E., Fadai, D., AkbarpourShirazi, M., Ghodsipour, S.H.: Land suitability analysis for solar farms exploitation using GIS and fuzzy analytic hierarchy process (FAHP)—a case study of Iran. Energies 9(8), 643 (2016)

    Article  Google Scholar 

  22. 22.

    SM. Population and vital statistics—year 2011, Available online at http://statsmauritius.govmu.org/English/Documents/demography2012.pdf. (2011) [Accessed on 24 Dec 2018].

  23. 23.

    Izquierdo, S., Rodrigues, M., Fueyo, N.: A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol. Energy 82(10), 929–939 (2008)

    Article  Google Scholar 

  24. 24.

    Szabó, S., Moner-Girona, M., Kougias, I., Bailis, R., Bódis, K.: Identification of advantageous electricity generation options in sub-Saharan Africa integrating existing resources. Nat. Energy 1(10), 1–8 (2016)

    Article  Google Scholar 

  25. 25.

    Scheer, H. Solar city: reconnecting energy generation and use to the technical and social logic of solar energy. In: Urban energy transition. Elsevier, pp. 15–26 (2008)

  26. 26.

    REN21. Renewable energy policy network for the 21st century (REN21), Available online at: http://www.ren21.net/Portals/0/documents/Resources/GSR/2013/GSR2013highres.pdf. (2013). [Accessed on 3 Mar 2019].

  27. 27.

    RenewableWatch. Model Solar City—Chandigarh puts its rooftops to good use, Available online at: https://renewablewatch.in/2017/06/01/modelsolar-city/. (2017) [Accessed on 6 Mar 2019].

  28. 28.

    Renewableenergyworld.com. California Bridges the Green Divide with Nation’s Biggest Solar Program for Low-income Renters, Available online at: http://www.renewableenergyworld.com/articles/2016/02/california-bridges-the-green-divide-with-nation-sbiggestsolar-program-for-low-income-renters.html. (2016). [Accessed on 8 Mar 2019].

  29. 29.

    Inquisitr.com. Germany builds a solar city that produces four times the energy it consumes, available online at https://www.inquisitr.com/1982709/germany-builds-a-solar-city-that-produces-fourtimes-the-energy-it-consumes-video/. (2015). [Accessed on 9 Mar 2019].

  30. 30.

    Byrne, J., Taminiau, J., Kurdgelashvili, L., Kim, K.N.: A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain. Energy Rev. 41, 830–844 (2015)

    Article  Google Scholar 

  31. 31.

    Sarako.mu. Mauritius now exploiting solar energy, Available online at: http://www.sarako.mu/en/80/mauritius-now-exploiting-solar-energy.html, (2014). [Accessed on 1 Mar 2019].

  32. 32.

    Carnegie Clean Energy. High penetration renewable energy roadmap for the Republic of Mauritius, Available online at http://www.mric.mu/English/Documents/High%20Penetration%20Renewable%20Energy%20Roadmap%20-%20Republic%20of%20Mauritius2018.pdf. (2017). [Accessed on 14 Nov 2020]

  33. 33.

    Goel, M.: Solar rooftop in India: Policies, challenges and outlook. Green Energy Environ. 1(2), 129–137 (2016)

    Article  Google Scholar 

  34. 34.

    Elahee, M.K.: Potential of hydropower in Mauritius: myth or reality? Energy Sources Part A 35(10), 921–925 (2013)

    Article  Google Scholar 

  35. 35.

    Entura. Battery vs pumped hydro – Are they sustainable?, Available online at https://www.entura.com.au/batteries-vs-pumped-storage-hydropower-are-they-sustainable/. (2017) [Accessed on 18 Nov 2020]

  36. 36.

    Elahee, K.: The challenges and potential options to meet the peak electricity demand in Mauritius. J. Energy Southern Afr. 22(3), 8–15 (2011)

    Article  Google Scholar 

  37. 37.

    Edoo, M.N., King, R.T.A.: New insights into the technical challenges of the Mauritius long term energy strategy. Energy 195, 116975 (2020)

    Article  Google Scholar 

Download references


The authors are grateful to the Mauritius Meteorological Services for data provision. Thanks are extended to the cartography section of the Ministry of Housing and Lands for the availability of the digital elevation model, settlement areas and high-resolution image. The adequate facilities provided by the University of Mauritius enabled the research presented in this paper. The insights provided by Dr. Lollchund at the initial stage of the current research are kindly acknowledged.

Author information



Corresponding author

Correspondence to Jay Rovisham Singh Doorga.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doorga, J.R.S., Tannoo, R., Rughooputh, S.D.D.V. et al. Exploiting the rooftop solar photovoltaic potential of a tropical island state: case of the Mascarene Island of Mauritius. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-020-00375-9

Download citation


  • Rooftop PV
  • Solar energy modelling
  • Solar city
  • GIS
  • Urban architecture
  • Mauritius