Skip to main content

The study of performance and emission characteristics of a spark ignition (SI) engine fueled with different blends of pomegranate ethanol

Abstract

This work focuses on exctracting ethanol from waste pomegranate (Punica granatum) and the experimental investigation of impact of various mixtures on emissions and engine performance. Ethanol is produced through the fermentation process of waste pomegranate fruits. Four combinations, namely E10, E15, E20, and E25, were prepared and tested for various speeds with a wide open throttle at 10:1 compression ratio. As a result, it was found that the ethanol enrichment increased the fuel consumption and power for braking while the thermal efficiency decreased. CO-produced HC has decreased, but ethanol concentrations have increased the NOx and CO2 content emitted from the exhaust gas. The 1500RPM engine speed and the E15 combination revealed the optimal values of performance parameters among all the fuel combinations studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Balat, M.: Balat, H, Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86, 2273–2282 (2009). https://doi.org/10.1016/j.apenergy.2009.03.015

    Article  Google Scholar 

  2. 2.

    Shafiee, S., Topal, E.: When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009). https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  3. 3.

    Manieniyan, V.: A study on energy crisis and the future of fossil fuels, Proceedings of SHEE 2009, Engineering Wing, DDE, Annamalai University (2009)

  4. 4.

    Covert, T., Greenstone, M., Knittel, C.R.: Will we ever stop using fossil fuels? J. Econ. Perspect. 30(1), 117–138 (2016)

    Article  Google Scholar 

  5. 5.

    Bae, C., Kim, J.: Alternative fuels for internal combustion engines, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology 1–25 (2016)

  6. 6.

    Bae, C., Kim, J.: Alternative fuels for internal combustion engines. Proc. Combust. Inst. 36, 3389–3413 (2017). https://doi.org/10.1016/j.proci.2016.09.009

    Article  Google Scholar 

  7. 7.

    Gnansounou, E., Dauriat, A.: Ethanol from biomass: a review. J. Sci. Ind. Res. 64, 809–821 (2005)

    Google Scholar 

  8. 8.

    Ramakrishna, Y.B.: Fuel blending in India learning and way forward, CSTEP, 24–35 (2016)

  9. 9.

    Cernat, A., Pana, C., Negurescu, N., et al.: Combustion of preheated raw animal fats-diesel fuel blends at diesel engine. J. Therm. Anal. Calorim. 140, 2369–2375 (2020). https://doi.org/10.1007/s10973-019-08972-5

    Article  Google Scholar 

  10. 10.

    Parivesh.: Alternative transport fuel an overview, the newsletter from CPCB (2003)

  11. 11.

    Lazaroiu, G., Mihaescu, L., Negreanu, G., Pana, C., Pisa, I., Cernat, A., Ciupageanu, D.-A.: Experimental investigations of innovative biomass energy harnessing solutions. Energies 11, 3469 (2018)

    Article  Google Scholar 

  12. 12.

    Onuki, S., Koziel, J.A., Van Leeuwen, J., Jenks, W.S., Greweii, D., Cai, L.: Ethanol production, purification, and analysis techniques: a review. Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. ASABE 12, 7210–7221 (2008). https://doi.org/10.13031/2013.25186

    Article  Google Scholar 

  13. 13.

    Pimentel, D., Patzek, T.W.: Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower. Nat. Resour. Res. 14, 65–76 (2005). https://doi.org/10.1007/s11053-005-4679-8

    Article  Google Scholar 

  14. 14.

    Nagenderan, S., Rajamamundi, P., Chandran, M., Gopinath, K.P.: Bioethanol from moringa olefira and Pithecellobium dulce leaves : production and characterization, energy sources. Part A Recover. Util. Environ. Eff. 42, 66–72 (2020). https://doi.org/10.1080/15567036.2019.1587055

    Article  Google Scholar 

  15. 15.

    Bai, F.W., Anderson, W.A., Moo-Young, M.: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26, 89–105 (2008). https://doi.org/10.1016/j.biotechadv.2007.09.002

    Article  Google Scholar 

  16. 16.

    Sarkar, A., Chowdhuri, A.K., Bhowal, A.J., Mandal, B.K.: The performance and emission characteristics of si engine running on different ethanol- gasoline blends. Int. J. Sci. Eng. Res. 3, 1–7 (2012)

    Google Scholar 

  17. 17.

    Thakur, A.K., Kaviti, A.K., Mehra, R., Mer, K.K.S.: Performance analysis of ethanol-gasoline blends on a spark-ignition engine: a review. Biofuels. 8, 91–112 (2016). https://doi.org/10.1080/17597269.2016.1204586

    Article  Google Scholar 

  18. 18.

    Thakur, A.K., Kaviti, A.K., Mehra, R., Mer, K.K.S.: Progress in performance analysis of ethanol-gasoline blends on SI engine. Renew. Sustain. Energy Rev. 69, 324–340 (2017). https://doi.org/10.1016/j.rser.2016.11.056

    Article  Google Scholar 

  19. 19.

    Doğan, B., Erol, D., Yaman, H., Kodanli, E.: The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark-ignition engine through exergy analysis. Appl. Therm. Eng. 2017(120), 433–443 (2017). https://doi.org/10.1016/j.applthermaleng.2017.04.012

    Article  Google Scholar 

  20. 20.

    Manikandan, K.: The effect of gasoline—ethanol blends and compression ratio on si engine performance and exhaust emissions. Int. J. Eng. Res. Technol. 2, 3142–3154 (2013)

    Google Scholar 

  21. 21.

    Mourad, M., Mahmoud, K.: Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends. Renew. Energy. 143, 762–771 (2019). https://doi.org/10.1016/j.renene.2019.05.064

    Article  Google Scholar 

  22. 22.

    Huynh, T.T., Le, M.D., Duong, D.N.: Effects of butanol–gasoline blends on SI engine performance, fuel consumption, and emission characteristics at partial engine speeds. Int. J. Energy Environ. Eng. 10, 483–492 (2019). https://doi.org/10.1007/s40095-019-0309-9

    Article  Google Scholar 

  23. 23.

    Schifter, I., Gonzalez, U., Díaz, L., Mejía-Centeno, I., Gonzalez-Macias, C.: Performance and emissions of gasoline–dual alcohol blends in spark-ignited single cylinder engine. Int. J. Engine Res. 18(9), 941–950 (2017). https://doi.org/10.1177/1468087416689173

    Article  Google Scholar 

  24. 24.

    Paolo, I., Giuseppe, L., Amedeo, A.: Ethanol in gasoline fuel blends: effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Appl. Therm. Eng. 130, 1081–1089 (2018). https://doi.org/10.1016/j.applthermaleng.2017.11.090

    Article  Google Scholar 

  25. 25.

    Yüksel, F., Yüksel, B.: The use of ethanol-gasoline blend as a fuel in an SI engine. Renew. Energy 29, 1181–1191 (2004). https://doi.org/10.1016/j.renene.2003.11.012

    Article  Google Scholar 

  26. 26.

    Yoon, S.H., Ha, S.Y., Roh, H.G., Lee, C.S.: Effect of bioethanol as an alternative fuel on the emissions reduction characteristics and combustion stability in a spark ignition engine. Proc. Instit. Mech. Eng. Part D J. Automob. Eng. 223(7), 941–951 (2009). https://doi.org/10.1243/09544070JAUTO1016

    Article  Google Scholar 

  27. 27.

    Al-Hasan, M.: Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Convers. Manage. 44(9), 1547–1561 (2003)

    Article  Google Scholar 

  28. 28.

    Saikrishnan, V., Karthikeyan, A., Jayaprabakar, J.: Analysis of ethanol blends on spark ignition engines. Int. J. Ambient Energy 39, 103–107 (2018). https://doi.org/10.1080/01430750.2016.1269678

    Article  Google Scholar 

  29. 29.

    Hsieh, W.D., Chen, R.H., Wu, T.L., Lin, T.H.: Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmos. Environ. 36, 403–410 (2002). https://doi.org/10.1016/S1352-2310(01)00508-8

    Article  Google Scholar 

  30. 30.

    Nwufo, O.C., Nwaiwu, C.F., Ononogbo, C., Igbokwe, J.O., Nwafor, O.M.I., Anyanwu, E.E.: Performance, emission and combustion characteristics of a single cylinder spark ignition engine using ethanol–petrol-blended fuels. Int. J. Ambient Energy (2017). https://doi.org/10.1080/01430750.2017.1354318

    Article  Google Scholar 

  31. 31.

    Nguyen, D.C., Hoang, A.T., Tran, Q.V., Hadiyanto, H., Wattanavichien, K., Pham, V.V.: A Review on the performance, combustion, and emission characteristics of spark-ignition engine fueled with 2,5-dimethylfuran compared to ethanol and gasoline. ASME J. Energy Resour. Technol. (2021). https://doi.org/10.1115/1.4048228

    Article  Google Scholar 

  32. 32.

    Yücesu, H.S., Sozen, A., Topgül, T., Arcaklioǧlu, E.: Comparative study of a mathematical and experimental analysis of spark ignition engine performance used ethanol-gasoline blend fuel. Appl. Therm. Eng. 27, 358–368 (2007). https://doi.org/10.1016/j.applthermaleng.2006.07.027

    Article  Google Scholar 

  33. 33.

    Najafi, G., Ghobadian, B., Tavakoli, T., Buttsworth, D.R., Yusaf, T.F., Faizollahnejad, M.: Performance and exhaust emissions of a gasoline engine with ethanol-blended gasoline fuels using artificial neural network. Appl. Energy 86, 630–639 (2009). https://doi.org/10.1016/j.apenergy.2008.09.017

    Article  Google Scholar 

  34. 34.

    Elfasakhany, A.: Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis. Eng. Sci. Technol. Int. J. 18, 713–719 (2015). https://doi.org/10.1016/j.jestch.2015.05.003

    Article  Google Scholar 

  35. 35.

    Rao, R.N., Silitonga, A.S., Shamsuddin, A.H., Milano, J., Riayatsyah, T.M.I., Sebayang Bin Nur, A.H.T., Sabri, M., Yulita, M.R., Sembiring, R.W.: Effect of ethanol and gasoline blending on the performance of a stationary small single cylinder engine. Arab. J. Sci. Eng. 45, 5793–5802 (2020). https://doi.org/10.1007/s13369-020-04567-7

    Article  Google Scholar 

  36. 36.

    Demiray, E., Karatay, S.E., Dönmez, G.: Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Energy 159, 988–994 (2018). https://doi.org/10.1016/j.energy.2018.06.200

    Article  Google Scholar 

  37. 37.

    Demiray, E., Karatay, S.E., Dönmez, G.: Improvement of bioethanol production from pomegranate peels via acidic pretreatment and enzymatic hydrolysis. Environ. Sci. Pollut. Res. 26, 29366–29378 (2019). https://doi.org/10.1007/s11356-019-06020-1

    Article  Google Scholar 

  38. 38.

    Demiray, E., Karatay, S.E., Dönmez, G.: Efficient bioethanol production from pomegranate peels by newly isolated Kluyveromyces marxianus, energy sources. Part A Recover Util. Environ. Eff. 42, 709–718 (2020). https://doi.org/10.1080/15567036.2019.1600621

    Article  Google Scholar 

  39. 39.

    Zaharin, M.S.M., Abdullah, N.R., Masjuki, H.H., Ali, O.M., Najafi, G., Yusaf, T.: Evaluation on physicochemical properties of iso-butanol additives in the ethanol-gasoline blend on performance and emission characteristics of a spark-ignition engine. Appl. Therm. Eng. 144, 960–971 (2018). https://doi.org/10.1016/j.applthermaleng.2018.08.057

    Article  Google Scholar 

Download references

Funding

This research work did not acquire any funding from any profit/nonprofit organization in any form.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to D. Y. Dhande or Kiran B. Dahe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhande, D.Y., Sinaga, N. & Dahe, K.B. The study of performance and emission characteristics of a spark ignition (SI) engine fueled with different blends of pomegranate ethanol. Int J Energy Environ Eng 12, 295–306 (2021). https://doi.org/10.1007/s40095-020-00372-y

Download citation

Keywords

  • Biofuel
  • Pomegranate ethanol
  • Pollution control
  • Emission characteristics
  • SI. Engine performance