Abstract
Corn stalk (CS) is one of the most abundant agricultural residues containing high polysaccharides for low-cost bioethanol production. In this study, dilute acid along with intensified thermal pretreatment of CS and other parameters were optimized for higher yield of bioethanol. CS samples were pretreated using H2SO4 concentrations of 0.5, 1.0, 1.5, 2.0, and 2.5% at 100 °C for 1 h reaction time. Optimal conditions of 2% acid-pretreated CS, 5% (w/v) of Saccharomyces cerevisiae addition and 48 h fermentation produced highest yield of bioethanol: 32.53 (g/L) which was 1.24-fold increase. Hemicellulose degradation of 75.68% was recorded in the 2% acid-treated substrate. Scanning electron microscope (SEM) images revealed induced porosity and surface area disruption of CS in the treated samples. Crystallinity of the treated samples increased as shown by X-ray diffraction (XRD) analysis. Low concentrated H2SO4 coupled with thermal pretreatment could be a viable method of lignocellulosic biomass utilization for efficient bioethanol production.
Graphic abstract

This is a preview of subscription content, log in to check access.






Change history
24 December 2020
Unfortunately, the below sentence is added by mistake.
References
- 1.
Saini, J.K., Saini, R., Tewari, L.: Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 5, 337–353 (2015). https://doi.org/10.1007/s13205-014-0246-5
- 2.
Cesaro, A., Belgiorno, V.: Combined biogas and bioethanol production: opportunities and challenges for industrial application. Energies. 8, 8121–8144 (2015). https://doi.org/10.3390/en8088121
- 3.
Tursi, A.: A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6, 962–979 (2019). https://doi.org/10.18331/BRJ2019.6.2.3
- 4.
Shah, S., Venkatramanan, V., Prasad, R.: Sustainable green technologies for environmental management. Sustain. Green Technol. Environ. Manag. (2019). https://doi.org/10.1007/978-981-13-2772-8
- 5.
Kefale, A., Redi, M., Asfaw, A.: Potential of bioethanol production and optimization test from agricultural waste: the case of wet coffee processing waste (pulp). Int. J. Renew. Energy Res. 2, 446–450 (2012). https://doi.org/10.20508/ijrer.79608
- 6.
Tong, Z., Cheng, N., Pratap, P.: Pretreatment of ligno-cellulosic biomass for biofuels why ligno-cellulosic bioethanol ? What Are the key factors for why do we need pretreatment?, pp. 1–4. University of Florida, Belle Glade (2013)
- 7.
Aboagye, D., Banadda, N., Kambugu, R., Seay, J., Kiggundu, N., Zziwa, A., Kabenge, I.: Glucose recovery from different corn stover fractions using dilute acid and alkaline pretreatment techniques. J. Ecol. Environ. (2017). https://doi.org/10.1186/s41610-017-0044-1
- 8.
Li, P., Cai, D., Luo, Z., Qin, P., Chen, C., Wang, Y., Zhang, C., Wang, Z., Tan, T.: Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresour. Technol. 206, 86–92 (2016). https://doi.org/10.1016/j.biortech.2016.01.077
- 9.
Chandel, A.K., Es, C., Rudravaram, R., Narasu, L., Rao, V., Ravindra, P.: Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev. 2, 14–32 (2007)
- 10.
Madu, J.O., Agboola, B.O.: Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3 Biotech. 8, 1–6 (2018). https://doi.org/10.1007/s13205-017-1033-x
- 11.
Manivannan, A., Narendhirakannan, R.T.: Bioethanol production from aquatic weed water hyacinth (Eichhornia crassipes) by yeast fermentation. Waste Biomass Valoriz. 6, 209–216 (2015). https://doi.org/10.1007/s12649-015-9347-6
- 12.
Kumar, P., Kumar, V., Kumar, S., Singh, J., Kumar, P.: Bioethanol production from sesame (Sesamum indicum L.) plant residue by combined physical, microbial and chemical pretreatments. Bioresour. Technol. 297, 122484 (2020). https://doi.org/10.1016/j.biortech.2019.122484
- 13.
Frederick, N., Zhang, N., Djioleu, A., Ge, X., Xu, J., Carrier, D.J.: The effect of washing dilute acid pretreated poplar biomass on ethanol yields. In: Sustainable degradation of lignocellulosic biomass—techniques applications and commercialization, pp. 105–117. Web of Science, Washington (2013). https://doi.org/10.5772/56129
- 14.
Adekunle, A.E., Zhang, C., Guo, C., Liu, C.Z.: Laccase production from trametes versicolor in solid-state fermentation of steam-exploded pretreated cornstalk. Waste Biomass Valoriz. 8, 153–159 (2017). https://doi.org/10.1007/s12649-016-9562-9
- 15.
Anwar, Z., Gulfraz, M., Imran, M., Asad, M.J., Shafi, A.I., Anwar, P., Qureshi, R.: Optimization of dilute acid pretreatment using response surface methodology for bioethanol production from cellulosic biomass of Rice Polish. Pak. J. Bot. 44, 169–176 (2012)
- 16.
Chi, C., Zhang, Z., Chang, H.M., Jameel, H.: Determination of furfural and hydroxymethylfurfural formed from biomass under acidic conditions. J. Wood Chem. Technol. 29, 265–276 (2009). https://doi.org/10.1080/02773810903096025
- 17.
Zhang, Q., Wei, Y., Han, H., Weng, C.: Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour. Technol. 251, 358–363 (2018). https://doi.org/10.1016/j.biortech.2017.12.085
- 18.
Xu, Z., Huang, F.: Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 174, 43–62 (2014). https://doi.org/10.1007/s12010-014-1015-y
- 19.
Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., Ramakrishnan, S.: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011, 787532 (2011). https://doi.org/10.4061/2011/787532
- 20.
Duangwang, S., Sangwichien, C.: Utilization of oil palm empty fruit bunch hydrolysate for ethanol production by baker’s yeast and Loog-Pang. Elsevier, New York (2015)
- 21.
Islam, M.S., Guo, C., Liu, C.-Z.: Enhanced hydrogen and volatile fatty acid production from sweet sorghum stalks by two-steps dark fermentation with dilute acid treatment in between. Int. J. Hydrogen Energy. 43, 659–666 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.059
- 22.
Phwan, C.K., Chew, K.W., Sebayang, A.H., Ong, H.C., Ling, T.C., Malek, M.A., Ho, Y.C., Show, P.L.: Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol. Biofuels. 12, 1–8 (2019). https://doi.org/10.1186/s13068-019-1533-5
- 23.
Tesfaw, A., Assefa, F.: Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int. Sch. Res. Not. 2014, 1–11 (2014). https://doi.org/10.1155/2014/532852
- 24.
Sritrakul, N., Nitisinprasert, S., Keawsompong, S.: Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith. Agric. Nat. Resour. 51, 512–519 (2017). https://doi.org/10.1016/j.anres.2017.12.006
- 25.
Marina, D., Medina-torres, L., Valencia-lópez, J.J., Calderas, F.: Study of the rheological properties of a fermentation broth of the fungus Beauveria bassiana in a bioreactor under different hydrodynamic conditions. J. Microbiol. Biotechnol. (2012). https://doi.org/10.4014/jmb.1204.04029
- 26.
Chakravarty, I., Singh, S., Kundu, S.: Rheological characterization of Streptomyces roseosporus for the production of daptomycin. Chem. Biochem. Eng. Q. 31, 225–231 (2017). https://doi.org/10.15255/CABEQ.2016.966
- 27.
Gutierrez, E.D., Amul, K.M.L., Carpio, R.M., Toledo, A.R.M.: Effect of selected fermentation parameters on bioethanol production from ripe carabao mango (Mangifera indica) peelings. Asia Pac J. Multidiscip. Res. 3, 29–35 (2015)
- 28.
Li, Y., Gao, K., Tian, S., Zhang, S., Yang, X.: Evaluation of Saccharomyces cerevisiae Y5 for ethanol production from enzymatic hydrolysate of non-detoxified steam-exploded corn stover. Bioresour. Technol. 102, 10548–10552 (2011). https://doi.org/10.1016/j.biortech.2011.08.039
- 29.
Braide, W., Kanu, I.A., Oranusi, U.S., Adeleye, S.A.: Production of bioethanol from agricultural waste. J. Fundam. Appl. Sci. (2016). https://doi.org/10.4314/jfas.v8i2.14
- 30.
Dziekońska-Kubczak, U., Berłowska, J., Dziugan, P., Patelski, P., Balcerek, M., Pielech-Przybylska, K., Czyzowska, A., Domański, J.: Comparison of steam explosion, dilute acid, and alkali pretreatments on enzymatic saccharification and fermentation of hardwood sawdust. BioResources 13, 6970–6984 (2019). https://doi.org/10.15376/biores.13.3.6970-6984
- 31.
Prasertwasu, S., Khumsupan, D., Komolwanich, T., Chaisuwan, T., Luengnaruemitchai, A., Wongkasemjit, S.: Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). Bioresour. Technol. 163, 152–159 (2014). https://doi.org/10.1016/j.biortech.2014.04.043
- 32.
Singh, A., Bajar, S., Bishnoi, N.R.: Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel 116, 699–702 (2014). https://doi.org/10.1016/j.fuel.2013.08.072
- 33.
Tian, S., Li, Y., Wang, Z., Yang, X.: Evaluation of simultaneous saccharification and ethanol fermentation of undetoxified steam-exploded corn stover by Saccharomyces cerevisiae Y5. Bioenergy Res. 6, 1142–1146 (2013)
- 34.
Chu, D., Zhang, J., Bao, J.: Simultaneous saccharification and ethanol fermentation of corn stover at high temperature and high solids loading by a thermotolerant strain Saccharomyces cerevisiae DQ1. Bioenergy Res. 5, 1020–1026 (2012)
- 35.
Jutakanoke, R., Leepipatpiboon, N., Tolieng, V., Kitpreechavanich, V., Srinorakutara, T., Akaracharanya, A.: Sugarcane leaves: pretreatment and ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenerg. 39, 283–289 (2012). https://doi.org/10.1016/j.biombioe.2012.01.018
- 36.
Akaracharanya, A., Kesornsit, J., Leepipatpiboon, N., Srinorakutara, T., Kitpreechavanich, V., Tolieng, V.: Evaluation of the waste from cassava starch production as a substrate for ethanol fermentation by Saccharomyces cerevisiae. Ann. Microbiol. 61, 431–436 (2011). https://doi.org/10.1007/s13213-010-0155-8
- 37.
Park, J.M., Oh, B.R., Seo, J.W., Hong, W.K., Yu, A., Sohn, J.H., Kim, C.H.: Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 170, 1807–1814 (2013)
- 38.
Bhadana, B., Chauhan, M.: Bioethanol production using Saccharomyces cerevisiae with different perspectives: substrates, growth variables, inhibitor reduction and immobilization. Ferment. Technol. 5, 2–5 (2016). https://doi.org/10.4172/2167-7972.1000131
- 39.
Prescott, L.M., Harley, P.J., Klein, D.A.: Microbial nutrition, growth and control. In: Willey, M.J., Sherwood, L.M., Woolverton, C.J. (eds.) Microbiology, 7th edn., pp. 101–149. The McGraw-Hill Companies, New York (2008)
- 40.
Li, P., He, C., Li, G., Ding, P., Lan, M., Gao, Z., Jiao, Y.: Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production. Bioengineered 11, 251–260 (2020). https://doi.org/10.1080/21655979.2020.1733733
- 41.
Zheng, Q., Zhou, T., Wang, Y., Cao, X., Wu, S., Zhao, M., Wang, H., Xu, M., Zheng, B., Zheng, J., Guan, X.: Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 8, 1–9 (2018). https://doi.org/10.1038/s41598-018-19517-5
- 42.
Kshirsagar, S.D., Waghmare, P.R., Chandrakant Loni, P., Patil, S.A., Govindwar, S.P.: Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv. 5, 46525–46533 (2015). https://doi.org/10.1039/c5ra04430h
- 43.
Xiao, L.P., Sun, Z.J., Shi, Z.J., Xu, F., Sun, R.C.: Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources 6, 1576–1598 (2011). https://doi.org/10.15376/biores.6.2.1576-1598
- 44.
Kucharska, K., Słupek, E., Cieśliński, H., Kamiński, M.: Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes. Chem. Pap. 74, 1199–1209 (2019). https://doi.org/10.1007/s11696-019-00960-1
- 45.
Pereira, S.C., Maehara, L., Machado, C.M.M., Farinas, C.S.: Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew. Energy. 87, 607–617 (2016). https://doi.org/10.1016/j.renene.2015.10.054
Acknowledgements
We are grateful to the Commission on Science and Technology for Sustainable Development in the South (COMSATS) and Bangladesh Council of Scientific and Industrial Research (BCSIR) for awarding the COMSAT-BCSIR post-doctoral fellowship to Dr Adekunle E.A.
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original version of this article was revised: Some of the text is wrongly updated.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Jehadin, F., Rabeya, T., Asad, M.A. et al. Efficient conversion of cornstalk to bioethanol using dilute H2SO4 pretreatment. Int J Energy Environ Eng (2020). https://doi.org/10.1007/s40095-020-00366-w
Received:
Accepted:
Published:
Keywords
- Bioethanol
- Acid pretreatment
- Biofuel
- Corn stalk
- Fermentation