Efficient conversion of cornstalk to bioethanol using dilute H2SO4 pretreatment

Abstract

Fruit waste is an attractive lignocellulosic material for bioethanol production since it is one of the most abundant renewable resources Fruit waste is an attractive lignocellulosic material for bioethanol production since it is one of the most abundant renewable resources. Corn stalk (CS) is one of the most abundant agricultural residues containing high polysaccharides for low-cost bioethanol production. In this study, dilute acid along with intensified thermal pretreatment of CS and other parameters were optimized for higher yield of bioethanol. CS samples were pretreated using H2SO4 concentrations of 0.5, 1.0, 1.5, 2.0, and 2.5% at 100 °C for 1 h reaction time. Optimal conditions of 2% acid-pretreated CS, 5% (w/v) of Saccharomyces cerevisiae addition and 48 h fermentation produced highest yield of bioethanol: 32.53 (g/L) which was 1.24-fold increase. Hemicellulose degradation of 75.68% was recorded in the 2% acid-treated substrate. Scanning electron microscope (SEM) images revealed induced porosity and surface area disruption of CS in the treated samples. Crystallinity of the treated samples increased as shown by X-ray diffraction (XRD) analysis. Low concentrated H2SO4 coupled with thermal pretreatment could be a viable method of lignocellulosic biomass utilization for efficient bioethanol production.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Saini, J.K., Saini, R., Tewari, L.: Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 5, 337–353 (2015). https://doi.org/10.1007/s13205-014-0246-5

    Article  Google Scholar 

  2. 2.

    Cesaro, A., Belgiorno, V.: Combined biogas and bioethanol production: opportunities and challenges for industrial application. Energies. 8, 8121–8144 (2015). https://doi.org/10.3390/en8088121

    Article  Google Scholar 

  3. 3.

    Tursi, A.: A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6, 962–979 (2019). https://doi.org/10.18331/BRJ2019.6.2.3

    Article  Google Scholar 

  4. 4.

    Shah, S., Venkatramanan, V., Prasad, R.: Sustainable green technologies for environmental management. Sustain. Green Technol. Environ. Manag. (2019). https://doi.org/10.1007/978-981-13-2772-8

    Article  Google Scholar 

  5. 5.

    Kefale, A., Redi, M., Asfaw, A.: Potential of bioethanol production and optimization test from agricultural waste: the case of wet coffee processing waste (pulp). Int. J. Renew. Energy Res. 2, 446–450 (2012). https://doi.org/10.20508/ijrer.79608

    Article  Google Scholar 

  6. 6.

    Tong, Z., Cheng, N., Pratap, P.: Pretreatment of ligno-cellulosic biomass for biofuels why ligno-cellulosic bioethanol ? What Are the key factors for why do we need pretreatment?, pp. 1–4. University of Florida, Belle Glade (2013)

    Google Scholar 

  7. 7.

    Aboagye, D., Banadda, N., Kambugu, R., Seay, J., Kiggundu, N., Zziwa, A., Kabenge, I.: Glucose recovery from different corn stover fractions using dilute acid and alkaline pretreatment techniques. J. Ecol. Environ. (2017). https://doi.org/10.1186/s41610-017-0044-1

    Article  Google Scholar 

  8. 8.

    Li, P., Cai, D., Luo, Z., Qin, P., Chen, C., Wang, Y., Zhang, C., Wang, Z., Tan, T.: Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresour. Technol. 206, 86–92 (2016). https://doi.org/10.1016/j.biortech.2016.01.077

    Article  Google Scholar 

  9. 9.

    Chandel, A.K., Es, C., Rudravaram, R., Narasu, L., Rao, V., Ravindra, P.: Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev. 2, 14–32 (2007)

    Google Scholar 

  10. 10.

    Madu, J.O., Agboola, B.O.: Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3 Biotech. 8, 1–6 (2018). https://doi.org/10.1007/s13205-017-1033-x

    Article  Google Scholar 

  11. 11.

    Manivannan, A., Narendhirakannan, R.T.: Bioethanol production from aquatic weed water hyacinth (Eichhornia crassipes) by yeast fermentation. Waste Biomass Valoriz. 6, 209–216 (2015). https://doi.org/10.1007/s12649-015-9347-6

    Article  Google Scholar 

  12. 12.

    Kumar, P., Kumar, V., Kumar, S., Singh, J., Kumar, P.: Bioethanol production from sesame (Sesamum indicum L.) plant residue by combined physical, microbial and chemical pretreatments. Bioresour. Technol. 297, 122484 (2020). https://doi.org/10.1016/j.biortech.2019.122484

    Article  Google Scholar 

  13. 13.

    Frederick, N., Zhang, N., Djioleu, A., Ge, X., Xu, J., Carrier, D.J.: The effect of washing dilute acid pretreated poplar biomass on ethanol yields. In: Sustainable degradation of lignocellulosic biomass—techniques applications and commercialization, pp. 105–117. Web of Science, Washington (2013). https://doi.org/10.5772/56129

    Google Scholar 

  14. 14.

    Adekunle, A.E., Zhang, C., Guo, C., Liu, C.Z.: Laccase production from trametes versicolor in solid-state fermentation of steam-exploded pretreated cornstalk. Waste Biomass Valoriz. 8, 153–159 (2017). https://doi.org/10.1007/s12649-016-9562-9

    Article  Google Scholar 

  15. 15.

    Anwar, Z., Gulfraz, M., Imran, M., Asad, M.J., Shafi, A.I., Anwar, P., Qureshi, R.: Optimization of dilute acid pretreatment using response surface methodology for bioethanol production from cellulosic biomass of Rice Polish. Pak. J. Bot. 44, 169–176 (2012)

    Google Scholar 

  16. 16.

    Chi, C., Zhang, Z., Chang, H.M., Jameel, H.: Determination of furfural and hydroxymethylfurfural formed from biomass under acidic conditions. J. Wood Chem. Technol. 29, 265–276 (2009). https://doi.org/10.1080/02773810903096025

    Article  Google Scholar 

  17. 17.

    Zhang, Q., Wei, Y., Han, H., Weng, C.: Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour. Technol. 251, 358–363 (2018). https://doi.org/10.1016/j.biortech.2017.12.085

    Article  Google Scholar 

  18. 18.

    Xu, Z., Huang, F.: Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 174, 43–62 (2014). https://doi.org/10.1007/s12010-014-1015-y

    Article  Google Scholar 

  19. 19.

    Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., Ramakrishnan, S.: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011, 787532 (2011). https://doi.org/10.4061/2011/787532

    Article  Google Scholar 

  20. 20.

    Duangwang, S., Sangwichien, C.: Utilization of oil palm empty fruit bunch hydrolysate for ethanol production by baker’s yeast and Loog-Pang. Elsevier, New York (2015)

    Google Scholar 

  21. 21.

    Islam, M.S., Guo, C., Liu, C.-Z.: Enhanced hydrogen and volatile fatty acid production from sweet sorghum stalks by two-steps dark fermentation with dilute acid treatment in between. Int. J. Hydrogen Energy. 43, 659–666 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.059

    Article  Google Scholar 

  22. 22.

    Phwan, C.K., Chew, K.W., Sebayang, A.H., Ong, H.C., Ling, T.C., Malek, M.A., Ho, Y.C., Show, P.L.: Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol. Biofuels. 12, 1–8 (2019). https://doi.org/10.1186/s13068-019-1533-5

    Article  Google Scholar 

  23. 23.

    Tesfaw, A., Assefa, F.: Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int. Sch. Res. Not. 2014, 1–11 (2014). https://doi.org/10.1155/2014/532852

    Article  Google Scholar 

  24. 24.

    Sritrakul, N., Nitisinprasert, S., Keawsompong, S.: Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith. Agric. Nat. Resour. 51, 512–519 (2017). https://doi.org/10.1016/j.anres.2017.12.006

    Article  Google Scholar 

  25. 25.

    Marina, D., Medina-torres, L., Valencia-lópez, J.J., Calderas, F.: Study of the rheological properties of a fermentation broth of the fungus Beauveria bassiana in a bioreactor under different hydrodynamic conditions. J. Microbiol. Biotechnol. (2012). https://doi.org/10.4014/jmb.1204.04029

    Article  Google Scholar 

  26. 26.

    Chakravarty, I., Singh, S., Kundu, S.: Rheological characterization of Streptomyces roseosporus for the production of daptomycin. Chem. Biochem. Eng. Q. 31, 225–231 (2017). https://doi.org/10.15255/CABEQ.2016.966

    Article  Google Scholar 

  27. 27.

    Gutierrez, E.D., Amul, K.M.L., Carpio, R.M., Toledo, A.R.M.: Effect of selected fermentation parameters on bioethanol production from ripe carabao mango (Mangifera indica) peelings. Asia Pac J. Multidiscip. Res. 3, 29–35 (2015)

    Google Scholar 

  28. 28.

    Li, Y., Gao, K., Tian, S., Zhang, S., Yang, X.: Evaluation of Saccharomyces cerevisiae Y5 for ethanol production from enzymatic hydrolysate of non-detoxified steam-exploded corn stover. Bioresour. Technol. 102, 10548–10552 (2011). https://doi.org/10.1016/j.biortech.2011.08.039

    Article  Google Scholar 

  29. 29.

    Braide, W., Kanu, I.A., Oranusi, U.S., Adeleye, S.A.: Production of bioethanol from agricultural waste. J. Fundam. Appl. Sci. (2016). https://doi.org/10.4314/jfas.v8i2.14

    Article  Google Scholar 

  30. 30.

    Dziekońska-Kubczak, U., Berłowska, J., Dziugan, P., Patelski, P., Balcerek, M., Pielech-Przybylska, K., Czyzowska, A., Domański, J.: Comparison of steam explosion, dilute acid, and alkali pretreatments on enzymatic saccharification and fermentation of hardwood sawdust. BioResources 13, 6970–6984 (2019). https://doi.org/10.15376/biores.13.3.6970-6984

    Article  Google Scholar 

  31. 31.

    Prasertwasu, S., Khumsupan, D., Komolwanich, T., Chaisuwan, T., Luengnaruemitchai, A., Wongkasemjit, S.: Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). Bioresour. Technol. 163, 152–159 (2014). https://doi.org/10.1016/j.biortech.2014.04.043

    Article  Google Scholar 

  32. 32.

    Singh, A., Bajar, S., Bishnoi, N.R.: Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel 116, 699–702 (2014). https://doi.org/10.1016/j.fuel.2013.08.072

    Article  Google Scholar 

  33. 33.

    Tian, S., Li, Y., Wang, Z., Yang, X.: Evaluation of simultaneous saccharification and ethanol fermentation of undetoxified steam-exploded corn stover by Saccharomyces cerevisiae Y5. Bioenergy Res. 6, 1142–1146 (2013)

    Article  Google Scholar 

  34. 34.

    Chu, D., Zhang, J., Bao, J.: Simultaneous saccharification and ethanol fermentation of corn stover at high temperature and high solids loading by a thermotolerant strain Saccharomyces cerevisiae DQ1. Bioenergy Res. 5, 1020–1026 (2012)

    Article  Google Scholar 

  35. 35.

    Jutakanoke, R., Leepipatpiboon, N., Tolieng, V., Kitpreechavanich, V., Srinorakutara, T., Akaracharanya, A.: Sugarcane leaves: pretreatment and ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenerg. 39, 283–289 (2012). https://doi.org/10.1016/j.biombioe.2012.01.018

    Article  Google Scholar 

  36. 36.

    Akaracharanya, A., Kesornsit, J., Leepipatpiboon, N., Srinorakutara, T., Kitpreechavanich, V., Tolieng, V.: Evaluation of the waste from cassava starch production as a substrate for ethanol fermentation by Saccharomyces cerevisiae. Ann. Microbiol. 61, 431–436 (2011). https://doi.org/10.1007/s13213-010-0155-8

    Article  Google Scholar 

  37. 37.

    Park, J.M., Oh, B.R., Seo, J.W., Hong, W.K., Yu, A., Sohn, J.H., Kim, C.H.: Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 170, 1807–1814 (2013)

    Article  Google Scholar 

  38. 38.

    Bhadana, B., Chauhan, M.: Bioethanol production using Saccharomyces cerevisiae with different perspectives: substrates, growth variables, inhibitor reduction and immobilization. Ferment. Technol. 5, 2–5 (2016). https://doi.org/10.4172/2167-7972.1000131

    Article  Google Scholar 

  39. 39.

    Prescott, L.M., Harley, P.J., Klein, D.A.: Microbial nutrition, growth and control. In: Willey, M.J., Sherwood, L.M., Woolverton, C.J. (eds.) Microbiology, 7th edn., pp. 101–149. The McGraw-Hill Companies, New York (2008)

    Google Scholar 

  40. 40.

    Li, P., He, C., Li, G., Ding, P., Lan, M., Gao, Z., Jiao, Y.: Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production. Bioengineered 11, 251–260 (2020). https://doi.org/10.1080/21655979.2020.1733733

    Article  Google Scholar 

  41. 41.

    Zheng, Q., Zhou, T., Wang, Y., Cao, X., Wu, S., Zhao, M., Wang, H., Xu, M., Zheng, B., Zheng, J., Guan, X.: Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 8, 1–9 (2018). https://doi.org/10.1038/s41598-018-19517-5

    Article  Google Scholar 

  42. 42.

    Kshirsagar, S.D., Waghmare, P.R., Chandrakant Loni, P., Patil, S.A., Govindwar, S.P.: Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv. 5, 46525–46533 (2015). https://doi.org/10.1039/c5ra04430h

    Article  Google Scholar 

  43. 43.

    Xiao, L.P., Sun, Z.J., Shi, Z.J., Xu, F., Sun, R.C.: Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources 6, 1576–1598 (2011). https://doi.org/10.15376/biores.6.2.1576-1598

    Article  Google Scholar 

  44. 44.

    Kucharska, K., Słupek, E., Cieśliński, H., Kamiński, M.: Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes. Chem. Pap. 74, 1199–1209 (2019). https://doi.org/10.1007/s11696-019-00960-1

    Article  Google Scholar 

  45. 45.

    Pereira, S.C., Maehara, L., Machado, C.M.M., Farinas, C.S.: Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew. Energy. 87, 607–617 (2016). https://doi.org/10.1016/j.renene.2015.10.054

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Commission on Science and Technology for Sustainable Development in the South (COMSATS) and Bangladesh Council of Scientific and Industrial Research (BCSIR) for awarding the COMSAT-BCSIR post-doctoral fellowship to Dr Adekunle E.A.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Abiodun E. Adekunle or Md Saiful Islam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 146 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jehadin, F., Rabeya, T., Asad, M.A. et al. Efficient conversion of cornstalk to bioethanol using dilute H2SO4 pretreatment. Int J Energy Environ Eng (2020). https://doi.org/10.1007/s40095-020-00366-w

Download citation

Keywords

  • Bioethanol
  • Acid pretreatment
  • Biofuel
  • Corn stalk
  • Fermentation