Optimal bed thickness and effective size for improving wastewater quality for irrigation


With the increased use of wastewater for irrigation, there is the need to reduce the contaminant levels in wastewater. The slow sand filtration (SSF) is one such method that can be used to improve wastewater quality. However, the treatment quality depends among other factors on the depth of sand bed and the effective size. Acquiring sand of a particular effective size is becoming increasing difficulty and, therefore, this study sought to investigate over a specified area, the optimal depth and effective size that will be able to get rid of contaminants in wastewater. In separate experiments, three depths (30 cm, 40 cm and 50 cm) and two effective sizes (0.27 mm and 0.45 mm) were set up to investigate their effectiveness in removing Faecal coliform, E. coli and heavy metals (Pb, Cu and Fe) for wastewater from a peri-urban drain used for irrigating vegetables. Results showed that a minimum sand bed thickness of 40 cm and an effective size of up to 0.45 mm reduced the contaminants tested significantly, wastewater from the drain can be treated. It must be mentioned that the finer sand (0.27 mm) had a slightly better removal efficiency. This implies that the extra cost of acquiring sand of relatively smaller effective size and a higher bed depth with the aim of improving wastewater quality can be saved. Further investigations are being carried out on the combined effects of the optimal sand bed depth and effective size.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Khalil, S., Kakar, M.K.: Agricultural use of untreated urban wastewater in Pakistan. Asian J. Agric. Rural Dev. 1, 21–26 (2011)

    Google Scholar 

  2. 2.

    FAO: Food and Agriculture Organization of the United Nations (FAO) [Internet]. Water (2010). https://www.fao.org/water/en/. Accessed 17 Sep 2019

  3. 3.

    Raschid-sally, L., Jayakody, P.: Drivers and characteristics of wastewater agriculture in developing countries: Colombo, Sri Lanka (2008)

  4. 4.

    FAO: Quality control of wastewater for irrigated crop production (Water reports-10) [Internet]. Westcot DW, editor. Rome (1997). https://webcache.googleusercontent.com/search?q=cache:https://www.bvsde.ops-oms.org/bvsair/e/repindex/repi84/vleh/fulltext/acrobat/W5363e031.pdf

  5. 5.

    Itchon, G.S., Gensch, R.: Pathogens and contaminants [Internet] (2011). https://www.sswm.info/content/pathogens-contaminants. Accessed 4 Oct 2019

  6. 6.

    LeChevallier, M.W., Au, K.-K.: Water Treatment and Pathogen Control World Health Organization titles with IWA Publishing. World Health Organization and International Water Association, Cornwall (2004)

    Google Scholar 

  7. 7.

    Pandey, P.K., Kass, P.H., Soupir, M.L., Biswas, S., Singh, V.P.: Contamination of water resources by pathogenic bacteria. MMB Express 4, 51 (2014)

    Article  Google Scholar 

  8. 8.

    Abegunrin, T.P., Awe, G.O., Idowu, D.O., Adejumobi, M.A.: Impact of wastewater irrigation on soil physico-chemical properties, growth and water use pattern of two indigenous vegetables in southwest Nigeria. CATENA 139, 167–178 (2016). https://doi.org/10.1016/j.catena.2015.12.014

    Article  Google Scholar 

  9. 9.

    Darvishi, H.H., Manshouri, M., Farahani, H.A.: The effect of irrigation by domestic waste water on soil properties. J. Soil Sci. Environ. Manag. 1, 30–33 (2010)

    Google Scholar 

  10. 10.

    Prinz, D., Singh, A.K.: Water resources in arid regions and their sustainable management. Ann. Arid Zone 39(3), 251–271 (2000)

    Google Scholar 

  11. 11.

    Hoek, W.V.D., Hassan, M.U., Ensink, J.H.J., Feenstra, S., Raschid-sally, L., Munir, S., et al.: Urban wastewater: A valuable resource for agriculture a case study from Haroonabad, Pakistan. Colombo, Sri Lanka (2002). https://www.ais.unwater.org/ais/pluginfile.php/225/mod_label/intro/Research.Report-63.pdf

  12. 12.

    Mara, D.: Domestic Wastewater Treatment in Developing Countries, pp. 230–251. Earthscan Publications, London (2004)

    Google Scholar 

  13. 13.

    Drechsel, P., Keraita, B., Raschid-Sally, L., Adam-Bradford, A.: Irrigated Urban Vegetable Production in Ghana Irrigated Urban Vegetable Production in Ghana : Characteristics, Benefits and Risk Mitigation, 2nd edn., p. 247. International Water Management Institute (IWMI), Sri Lanka (2014)

    Google Scholar 

  14. 14.

    Qadir, M., Wichelns, D., Raschid-sally, L., Mccornick, P.G., Drechsel, P., Bahri, A., et al.: The challenges of wastewater irrigation in developing countries. Agric. Water Manag. J. 97, 561–568 (2010)

    Article  Google Scholar 

  15. 15.

    WHO: Guidlines for the Safe use of Waste Water, Excreta and Grey Water. Volume 2 Wastewater Use in Agriculture. WHO, Geneva (2006)

    Google Scholar 

  16. 16.

    Becerra-castro, C., Rita, A., Vaz-moreira, I., Silva, E.F., Manaia, C.M., Nunes, O.C.: Wastewater reuse in irrigation : A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 75, 117–135 (2015). https://doi.org/10.1016/j.envint.2014.11.001

    Article  Google Scholar 

  17. 17.

    Engwa, G.A., Ferdinand, P.U., Nwalo, F.N., Unachukwu, M.N.: Mechanism and health effects of heavy metal toxicity in humans. In: Poisoning in the Modern World, pp. 2–24. IntechOpen, London (2019)

    Google Scholar 

  18. 18.

    Lente, I., Ofosu-Anim, J., Brimah, A.K., Atiemo, S.: Heavy metal pollution of vegetable crops irrigated with wastewater in Accra, Ghana. West Afr. J. Appl. Ecol. 22(1), 41–58 (2014)

    Google Scholar 

  19. 19.

    Tom, M., Fletcher, T.D., McCarthy, D.T.: Heavy metal contamination of vegetables irrigated by Urban stormwater: A matter of time? PLoS ONE 9(11), 1–21 (2014)

    Article  Google Scholar 

  20. 20.

    Gottinger, A.M., Mcmartin, D.W., Price, D., Hanson, B.: The effectiveness of slow sand filters to treat Canadian rural prairie water. Can. J. Civ. Eng. 38(August), 455–463 (2011)

    Article  Google Scholar 

  21. 21.

    Weber-shirk, M.L.: Enhancing slow sand filter performance with an acid-soluble seston extract. Water Res. 36, 4753–4756 (2002)

    Article  Google Scholar 

  22. 22.

    Rooklidge, S.J., Burns, E.R., Bolte, J.P.: Modeling antimicrobial contaminant removal in slow sand filtration. Water Res. 39, 331–339 (2005)

    Article  Google Scholar 

  23. 23.

    Bagundol, T.B., Awa, A.L., Enguito, M.R.C.: Efficiency of slow sand filter in purifying well water. J Multidiscip. Stud. 2(1), 86–102 (2013)

    Google Scholar 

  24. 24.

    Muhammad, N., Ellis, K., Parr, J., Smith, M.D.: Optimization of slow sand filtration. In: Reaching the Unreached: Challenges for the 21st Century. New Delhi, India, pp. 283–285 (1996). https://wedc.lboro.ac.uk/resources/conference/22/Muhamme.pdf

  25. 25.

    Sadiq, R., Al-Zahrani, M.A., Sheikh, A.K., Husain, T., Farooq, S.: Performance evaluation of slow sand filters using fuzzy rule-based modelling. Environ. Model Softw. 19(5), 507–515 (2004)

    Article  Google Scholar 

  26. 26.

    Mcnair, D.R., Sims, R.C., Sorensen, D.L., Hulbert, M., Mcnair, D.R., Sims, R.C., et al.: Schmutzdecke characterization of clinoptilolite-amended slow sand filtration. J. Am. Water Work Assoc. 79(12), 74–81 (1987)

    Article  Google Scholar 

  27. 27.

    Barrett, J.M., Bryck, J., Collins, M.R., Janonis, B.A., Logsdon, G.S.: Manual of design for slow sand filtration. In: Hendricks, D. (ed.) Journal of American Water Works Association. AWWA Research Foundation and American Water Works Association, Denver (1991)

    Google Scholar 

  28. 28.

    Mah, B.: Slow Sand Filter Agriculture and Agri-Food Canada Prairie Farm Rehabilitation Administration Agriculture et Agroalimentaire Canada Administration du rétablissement agricole des Prairies. PFRA Water Quality Matters (2001). www.quantumlynx.com/water

  29. 29.

    Tchobanoglous, G., Burton, F.L., Stensel, H.D.: Wastewater-Engineering-Treatment-and-Reuse. Metcalf and Eddy Inc., California (2003)

    Google Scholar 

  30. 30.

    Huisman, L., Wood, W.E.: Slow sand filtration. In: Huisman, L., Wood, W. (eds.) Editio, pp. 15–108. World Health Organization (WHO), Geneva (1974)

    Google Scholar 

  31. 31.

    Visscher, J.T.: Facilitating Community Water Supply Treatment: From transferring filtration technology to multi stakeholder learning, p. 256. Wageningen Universiteit, Wageningen (2006)

    Google Scholar 

  32. 32.

    Thomas, T.A., Kani, K.M.: Efficiency of slow sand filter in wastewater treatment. Int. J. Sci. Eng. Res. 7(4), 315–317 (2016)

    Google Scholar 

  33. 33.

    Pyper, G.R., Logsdon, G.: Slow Sand Filter Design, pp. 122–148. American Society of Civil Engineers, New York (1991)

    Google Scholar 

  34. 34.

    Troyan, J.J., Hansen, S.P.: Treatment of Microbial Contaminants in Potable Water Supplies : Technologies and Costs. Noyes Data Corporation, California (1989)

    Google Scholar 

  35. 35.

    Poynter, S.F., Slade, J.: The removal of viruses by slow sand filtration. Progress in water technology. Am. J. Int. Assoc. Water Pollut. Res. 9(1), 75–88 (1977)

    Google Scholar 

  36. 36.

    Van Dijk, J., Oomen, J.H.: Slow sand filtration for community water supply in developing countries; a design and construction manual. Voorburg, The Hague, The Netherlands. Report No.: 11 (1978)

  37. 37.

    Logsdon, G.S., Kohne, R., Abel, S., LaBonde, S.: Slow sand filtration for small water systems. J. Environ. Eng. Sci. 1(5), 339–348 (2002). https://doi.org/10.1139/s02-025

    Article  Google Scholar 

  38. 38.

    Ellis, K.: Slow sand filtration. CRC Crit. Rev. Environ. Control 15(4), 315–354 (1985)

    Article  Google Scholar 

  39. 39.

    Guchi, E.: Review on slow sand filtration in removing microbial contamination and particles from drinking water. Am. J. Food Nutr. 3(2), 47–55 (2015)

    Google Scholar 

  40. 40.

    Das, B.M.: Principles of Geotechnical Engineering, p. 42. Cengage Learning, Boston (2010)

    Google Scholar 

  41. 41.

    Van Der Hoek, J.P., Orlandini, E., Graveland, A., Smeenk, J.G.M.M.: Slow sand filtration: effect of grain size and filtration rate on operation and performance. In: Graham, N.J.D., Collins, R. (eds.) Advances in Slow Sand and Alternative Biological Filtration, pp. 201–210. John Wiley and Sons, Chichester (1996)

    Google Scholar 

  42. 42.

    Rolland, L., Molle, P., Lie, A.: Influence of the physical and mechanical characteristics of sands on the hydraulic and biological behaviors of sand filters. Desalination 248, 998–1007 (2009)

    Article  Google Scholar 

  43. 43.

    Langenbach, K.: Slow Sand Filtration of Secondary Effluent for Wastewater Reuse: Evaluation of Performance and Modeling of Bacteria Removal Herbert Hieronymus Druck amd Verlag [München]. Technical University München, München (2009)

    Google Scholar 

  44. 44.

    Di Bernardo, L., Escoba, R.A.: Influence of sand uniformity coefficient on slow sand filtration performance. In: Graham, N., Douglas, J., Collins, R.M. (eds.) Advances in Slow Sand and Alternative Biological Filtration, pp. 179–188. John Wiley and Sons, Chichester (1996)

    Google Scholar 

  45. 45.

    Błażejewski, R., Murat-Błażejewska, S.: Water retention time in intermittently dosed sand filters. Pol. J. Environ. Stud. 18(2), 289–292 (2009)

    Google Scholar 

  46. 46.

    Kaczkowski, J., Guerra-Mondragon, N., Lammers, R., Cox, K., Mckenna, R., Wink, S., et al.: Drinking Water Issues in Rural Colombia. Colombia (2012)

  47. 47.

    Campos, L.C., Su, M.F.J., Graham, N.J.D., Smith, S.R.: Biomass development in slow sand filters. Water Res. 2002(36), 4543–4551 (2001)

    Google Scholar 

  48. 48.

    Eliasson, J.: Hydraulic loading rates. Washington (2001)

  49. 49.

    Missimer, T.M., Jones, B., Maliva, R.G.: Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities, pp. 198–200. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  50. 50.

    Abudi, Z.N.: The effect of sand filter characteristics on removal efficiency of organic matter from grey water. Al-qadisiya. J. Eng. Sci. 4(2), 143–155 (2011)

    Google Scholar 

  51. 51.

    Anggraini, K.A.S.: Optimization of Slow Sand Filtration Design by Understanding the Influence of Operating Variables on the Suspended Solids Removal. Karlsruhe Institute of Technology, Karlsruhe (2018)

    Google Scholar 

  52. 52.

    WHO: Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture. World Health Organization-Technical Report Series, Geneva (1989)

    Google Scholar 

  53. 53.

    Mwabi, J.K., Mamba, B.B., Momba, M.N.B.: Removal of Escherichia coli and faecal coliforms from surface water and groundwater by household water treatment devices/systems: a sustainable solution for improving water quality in rural communities of the Southern African Development Community Region. Int. J. Environ. Res. Public Health 10(9), 139–170 (2012)

    Article  Google Scholar 

  54. 54.

    Mbir, B.I., Tetteh-Narh, R.: Using slow sand filtration system with activated charcoal layer to treat salon waste water in a selected community in Cape Coast, Ghana. J. Adv. Chem. Eng. 5(4), 8 (2015)

    Google Scholar 

  55. 55.

    Khatri, N., Tyagi, S., Rawtani, D.: Recent strategies for the removal of iron from water: a review. J. Water Process. Eng. 19(13), 291–304 (2017). https://doi.org/10.1016/j.jwpe.2017.08.015

    Article  Google Scholar 

  56. 56.

    Zhang, B., Gao, L., Fazal, S., Mahmood, Q., Laghari, M., Sayal, A.: Biosand filter containing melia biomass treating heavy metals and pathogens. Pol. J. Environ. Stud. 25(2), 859–864 (2016)

    Article  Google Scholar 

  57. 57.

    Harmon, S.: Iron Removal: A World Without Rules–A complete guide to iron removal methods, equipment & their limitations. Water Technology Magazine, Berlin (2003)

    Google Scholar 

  58. 58.

    Ayres, D.M., Davis, A.P., Gietka, P.M.: Removing heavy metals from wastewater. Maryland (1994)

  59. 59.

    Muhammad, N.: Removal of Heavy Metals by Slow Sand Filtration. Loughborough University, Loughborough (1998)

    Google Scholar 

  60. 60.

    Shabarova, T., Villiger, J., Morenkov, O., Niggemann, J., Dittmar, T., Pernthaler, J.: Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiol. Ecol. (2014). https://doi.org/10.1111/1574-6941.12339

    Article  Google Scholar 

  61. 61.

    Great Lakes Upper Mississippi River Board of State Public Health and Environmental Managers. 1987. Recommended Standards for Water Works. Albany, NY: Health Research Inc., Health Education Services Division.

  62. 62.

    Visscher, J. T., R. Paramasivam, A. Raman, and H. A. Heijnen. 1987. Slow Sand Filtration for Community Water Supply, Planning, Design, Construction, Operation, and Maintenance. Technical Paper No. 24, The Hague, Netherlands: International Reference Center for Community Water Supply and Sanitation.

Download references

Author information



Corresponding author

Correspondence to Peace Korshiwor Amoatey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: ANOVA results

Appendix: ANOVA results

See Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.

Part A: Bed thickness.

Table 4 ANOVA results for E. coli
Table 5 ANOVA results for Total coliform
Table 6 ANOVA results for Lead
Table 7 ANOVA results for Iron
Table 8 ANOVA results for Copper

Part B: Effective size.

Table 9 ANOVA results for E. coli
Table 10 ANOVA results for total coliform
Table 11 ANOVA results for copper
Table 12 ANOVA results for lead
Table 13 ANOVA results for Iron

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

King-Nyamador, G., Amoatey, P.K., Amoah, S. et al. Optimal bed thickness and effective size for improving wastewater quality for irrigation. Int J Energy Environ Eng (2020). https://doi.org/10.1007/s40095-020-00364-y

Download citation


  • Bed depth
  • Effective size
  • Kawukudi
  • Slow sand filter
  • Wastewater irrigation