Numerical model development for the prediction of thermal energy storage system performance: CFD study


A latent heat storage system to store available energy, to control excess heat generation and its management has gained vital importance due to its retrieve possibility. The design of geometry parameters for the energy storage system is of prime interest before experimentation. In the present study, a numerical investigation of 2D square enclosure filled with phase change material and discrete heating (Ld = 0.2 L, 0.4 L, 0.6 L, and 0.8 L) from the bottom while maintaining heater at constant heat flux has been carried out using the finite volume method. The enthalpy- porosity method was employed to model the phase change material melting process and optimum heater location predicted by solving fluid flow and heat transfer governing equations. Validation studies were conducted for two different geometries square and rectangular subjected to different boundary conditions. The results of the present work are depicted in terms of isotherms, liquid fraction, local phase change material temperature, and average phase change material temperature. It is observed both Ld = 0.2 L and 0.4 L locations have ensured the complete melting rate than other Ld = 0.6 L, 0.8 L locations. Moreover, energy stored by phase change material while heater at Ld = 0.4 L, 0.6 L, 0.8 L is decreased by 9.33%, 50.16%, and 53.05% respectively than compared to Ld = 0.2 L. Thus, the developed numerical model predicts that the enclosure type latent heat storage system is sensitive to the heater location for a given boundary condition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


L d :

Distance between heater and wall

u, v :

Velocity in X and Y-direction (m/s)

L :

Length of the enclosure

\(\delta\) :

Liquid fraction

T :

Temperature (K)

H :

Enthalpy (kJ/kg)

t :

Time (S)

A mushy :

Mushy zone constant


Phase change material

k :

Thermal conductivity (W/m K)


Thermal energy storage

T l :

Liquidus temperature

T s :

SoliDus temperature


  1. 1.

    Kraus, A.D., Bar-Cohen, A.: Thermal analysis and control of electronic equipment. McGraw-Hill, New York (1983)

    Google Scholar 

  2. 2.

    Ali, H.M., Arshad, A.: Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. Int. J. Heat Mass Transf. 112, 649–661 (2017).

    Article  Google Scholar 

  3. 3.

    Baby, R., Balaji, C.: Thermal management of electronics using phase change material based pin fin heat sinks. J. Phys. Conf. Ser. 395, 012134 (2012).

    Article  Google Scholar 

  4. 4.

    Put, S., et al.: Die sink electrodischarge machining of zirconia-based composites. Br. Ceram. Trans. 100(5), 207–213 (2001)

    Article  Google Scholar 

  5. 5.

    Saha, S.K., Dutta, P.: Thermal management of electronics using PCM-based heat sink subjected to cyclic heat load. IEEE Trans. Compon. Packag. Manuf. Technol. Part C 2, 464–473 (2012)

    Article  Google Scholar 

  6. 6.

    Arshad, A., Ali, H.M., Ali, M., Manzoor, S.: Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl. Therm. Eng. 112, 143–155 (2017).

    Article  Google Scholar 

  7. 7.

    Rozenfeld, T., Kozak, Y., Hayat, R., Ziskind, G.: Close-contact melting in a horizontal cylindrical enclosure with longitudinal plate fins: demonstration, modeling and application to thermal storage. Int. J. Heat Mass Transf. 86, 465–477 (2015).

    Article  Google Scholar 

  8. 8.

    Kozak, Y., Rozenfeld, T., Ziskind, G.: Close-contact melting in vertical annular enclosures with a non-isothermal base: theoretical modeling and application to thermal storage. Int. J. Heat Mass Transf. 72, 114–127 (2014).

    Article  Google Scholar 

  9. 9.

    Lafdi, K., Mesalhy, O., Elgafy, A.: Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications. J. Electron. Packag. (2008).

    Article  Google Scholar 

  10. 10.

    Weng, Y.-C., Cho, H.-P., Chang, C.-C., Chen, S.-L.: Heat pipe with PCM for electronic cooling. Appl. Energy 88, 1825–1833 (2011).

    Article  Google Scholar 

  11. 11.

    Shokouhmand, H., Kamkari, B.: Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp. Thermal Fluid Sci. 50, 201–212 (2013).

    Article  Google Scholar 

  12. 12.

    Kamkari, B., Amlashi, H.J.: Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures. Int. Commun. Heat Mass Transfer 88, 211–219 (2017).

    Article  Google Scholar 

  13. 13.

    Harish, S., Orejon, D., Takata, Y., Kohno, M.: Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. Appl. Therm. Eng. 80, 205–211 (2015).

    Article  Google Scholar 

  14. 14.

    Baby, R., Balaji, C.: Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink. Int. Commun. Heat Mass Transfer 46, 27–30 (2013).

    Article  Google Scholar 

  15. 15.

    Kalbasi, R., Salimpour, M.R.: Constructal design of phase change material enclosures used for cooling electronic devices. Appl. Therm. Eng. 84, 339–349 (2015).

    Article  Google Scholar 

  16. 16.

    Shatikian, V., Ziskind, G., Letan, R.: Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. Int. J. Heat Mass Transf. 51, 1488–1493 (2008).

    Article  MATH  Google Scholar 

  17. 17.

    Sun, X., Zhang, Q., Medina, M.A., Lee, K.O.: Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid–liquid phase change materials (PCMs). Appl. Energy 162, 1453–1461 (2016).

    Article  Google Scholar 

  18. 18.

    Bondareva, N.S., Sheremet, M.A.: Conjugate heat transfer in the PCM-based heat storage system with finned copper profile: application in electronics cooling. Int. J. Heat Mass Transf. 124, 1275–1284 (2018).

    Article  Google Scholar 

  19. 19.

    Huang, M.J., Eames, P.C., Norton, B., Hewitt, N.J.: Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energy Mater. Sol. Cells 95, 1598–1603 (2011).

    Article  Google Scholar 

  20. 20.

    Dhaidan, N.S., Khalaf, A.F.: Experimental evaluation of the melting behaviours of paraffin within a hemicylindrical storage cell. Int. Commun. Heat Mass Transf. 111, 104476 (2020).

    Article  Google Scholar 

  21. 21.

    Kamkari, B., Shokouhmand, H., Bruno, F.: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int. J. Heat Mass Transf. 72, 186–200 (2014).

    Article  Google Scholar 

  22. 22.

    Arasu, A.V., Mujumdar, A.S.: Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int. Commun. Heat Mass Transfer 39, 8–16 (2012).

    Article  Google Scholar 

  23. 23.

    Li, Z., Lv, L., Li, J.: Combination of heat storage and thermal spreading for high power portable electronics cooling. Int. J. Heat Mass Transf. 98, 550–557 (2016).

    Article  Google Scholar 

  24. 24.

    Sciacovelli, A., Colella, F., Verda, V.: Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement. Int. J. Energy Res. 37, 1610–1623 (2013).

    Article  Google Scholar 

  25. 25.

    Shukla, K.N., Solomon, A.B., Pillai, B.C., Ruba Singh, B.J., Saravana Kumar, S.: Thermal performance of heat pipe with suspended nano-particles. Heat Mass Transfer. 48, 1913–1920 (2012).

    Article  Google Scholar 

  26. 26.

    Zennouhi, H., Benomar, W., Kousksou, T., Msaad, A.A., Allouhi, A., Mahdaoui, M., El Rhafiki, T.: Effect of inclination angle on the melting process of phase change material. Case Stud. Thermal Eng. 9, 47–54 (2017).

    Article  Google Scholar 

  27. 27.

    Kheradmand, M., de Aguiar, J.B., Azenha, M.: Estimation of the specific enthalpy–temperature functions for plastering mortars containing hybrid mixes of phase change materials. Int. J. Energy Environ. Eng. 5, 81 (2014).

    Article  Google Scholar 

  28. 28.

    Rangappa, R., Rajoo, S.: Effect of thermo-physical properties of cooling mass on hybrid cooling for lithium-ion battery pack using design of experiments. Int. J. Energy Environ. Eng. 10, 67–83 (2019).

    Article  Google Scholar 

  29. 29.

    Sunku-Prasad, J., Anandalakshmi, R., Muthukumar, P.: Numerical investigation on conventional and PCM heat sinks under constant and variable heat flux conditions. Clean Techn. Environ. Policy (2020).

    Article  Google Scholar 

  30. 30.

    Indulakshmi, B., Madhu, G.: Heat transfer modeling and simulations for electronic cooling systems embedded with phase changing materials. Heat Transf. Asian Res. 47, 185–202 (2018).

    Article  Google Scholar 

  31. 31.

    Soares, N., Gaspar, A.R., Santos, P., Costa, J.J.: Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials. Appl. Energy 142, 192–205 (2015).

    Article  Google Scholar 

  32. 32.

    Rubitherm GmbH (2019) Rubitherm data sheet. egory/organische-pcm-rt

Download references

Author information



Corresponding author

Correspondence to Nagaraju Dora.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dora, N., Mohammad, A.R. & Chigurupati, R. Numerical model development for the prediction of thermal energy storage system performance: CFD study. Int J Energy Environ Eng (2020).

Download citation


  • Discrete heating
  • Latent heat storage
  • Natural convection
  • Computational fluid dynamics